Expert forum

Advances in interventional magnetic resonance imaging and its clinical applications

Expand
  • 1a. School of Biomedical Engineering, 1b. Institute of Medical Robotics, 1c. National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai 200240, China
    2a. Department of Radiology, 2b. Department of Neurosurgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2024-01-29

  Online published: 2024-07-04

Abstract

Interventional therapy has been widely used in surgeries involving neurology, vasculature, and breasts.Image-guided, robot-assisted interventional therapy significantly enhances surgical precision and safety, emerging as a critical trend in modern interventional surgery. Among various interventional imaging methods, interventional magnetic resonance imaging (i-MRI) stands out due to its excellent soft tissue differentiation, diverse imaging contrasts, ability to yield quantitative data, and no ionizing radiation. However, the challenges facing MRI-guided therapy include the relatively low speed of imaging and the stringent compatibility demands of interventional devices. Advance in the rapid i-MRI techniques and MR-compatible equipment have propelled i-MRI to a pivotal role in clinical applications, encompassing neurological, cardiovascular, prostate, and breast interventions. This review initially provides an overview of the current i-MRI landscape. It then consolidates the application of i-MRI in multiple medical interventions, offering illustrative examples. The article further delves into the obstacles posed by i-MRI, specifically slow imaging speed and the delicate spatiotemporal resolution balance. Ultimately, it envisages the growth potential of i-MRI in multimodal imaging, real-time MRI, and i-MRI-guided interventional robotic surgery.

Cite this article

FENG Yuan, HE Zhao, SUN Qingfang, SUN Bomin, YAN Fuhua, YANG Guangzhong . Advances in interventional magnetic resonance imaging and its clinical applications[J]. Journal of Diagnostics Concepts & Practice, 2024 , 23(02) : 108 -113 . DOI: 10.16150/j.1671-2870.2024.02.002

References

[1] CAMPBELL-WASHBURN A E, FARANESH A Z, LEDERMAN R J, et al. Magnetic resonance sequences and rapid acquisition for MR-guided interventions[J]. Magn Reson Imaging Clin N Am, 2015, 23(4):669-679.
[2] SCHULZ T, PUCCINI S, SCHNEIDER J P, et al. Interventional and intraoperative MR: review and update of techniques and clinical experience[J]. Eur Radiol, 2004, 14(12):2212-2227.
[3] MUELLER P R, STARK D D, SIMEONE J F, et al. MR-guided aspiration biopsy: needle design and clinical trials[J]. Radiology, 1986, 161(3):605-609.
[4] VAN SONNENBERG E, HAJEK P, GYLYS-MORIN V, et al. A wire-sheath system for MR-guided biopsy and drainage: laboratory studies and experience in 10 patients[J]. AJR, 1988, 151(4):815-817.
[5] MATSUMOTO R, SELIG A M, COLUCCI V M, et al. Interstitial Nd-Yag laser ablation in normal rabbit liver- trial to maximize the size of laser-induced lesions[J]. Lasers Surg Med, 1992, 12(6):650-658.
[6] CLINE H E, SCHENCK J F, HYNYNEN K, et al. MR-guided focused ultrasound surgery[J]. J Comput Assist Tomogr, 1992, 16(6):956-965.
[7] NIMSKY C, GANSLANDT O, VON KELLER B, et al. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients[J]. Radiology, 2004, 233(1):67-78.
[8] 李麟荪, 张学彬. 我国介入放射学新里程碑——磁共振介入治疗[J]. 介入放射学杂志, 2019, 28(11):1015-1016.
  LI L S, ZHANG X B. A new milestone in interventional radiology in China: magnetic resonance-guided interventional therapy[J]. J Int Radiol, 2019, 28(11):1015-1016.
[9] 李成利. 磁共振介入应用与前景[J]. 介入放射学杂志, 2019, 28(11):1017-1019.
  LI C L. The clinical application and prospect of interventional MRI景[J]. J Int Radiol, 2019, 28(11):1017-1019.
[10] SCHENCK J F, JOLESZ F A, ROEMER P B, et al. Superconducting open-configuration MR imaging system for image-guided therapy[J]. Radiology, 1995, 195(3):805-814.
[11] LARSON P S, STARR P A, BATES G, et al. An optimized system for interventional magnetic resonance ima-ging-guided stereotactic surgery: preliminary evaluation of targeting accuracy[J]. Neurosurgery, 2012, 70(1 Suppl Ope-rative):95-103.
[12] RAZAVI R, HILL D L, KEEVIL S F, et al. Cardiac cathe-terisation guided by MRI in children and adults with congenital heart disease[J]. Lancet, 2003, 362(9399):1877-1882.
[13] HYNYNEN K, POMEROY O, SMITH D N, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study[J]. Radiology, 2001, 219(1):176-185.
[14] LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25(2):72-82.
[15] UNTERBERG-BUCHWALD C, RITTER C O, REUPKE V, et al. Targeted endomyocardial biopsy guided by real-time cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2017, 19(1):45.
[16] HE Z, ZHU Y N, QIU S, et al. Low-rank and framelet based sparsity decomposition for interventional MRI reconstruction[J]. IEEE Trans Biomed Eng, 2022, 69(7):2294-2304.
[17] WANG G, YE J C, DE MAN B. Deep learning for tomographic image reconstruction[J]. Nat Mach Intell, 2020, 2(12):737-748.
[18] LIANG D, CHENG J, KE Z, et al. Deep magnetic resonance image reconstruction: inverse problems meet neural networks[J]. IEEE Signal Process Mag, 2020, 37(1):141-151.
[19] HE Z, ZHU Y N, CHEN Y, et al. A deep unrolled neural network for real-time MRI-guided brain intervention[J]. Nat Commun, 2023, 14(1):8257.
[20] REICHERT A, REISS S, KRAFFT A J, et al. Passive needle guide tracking with radial acquisition and phase-only cross-correlation[J]. Magn Reson Med, 2021, 85(2):1039-1046.
[21] OMARY R A, UNAL O, KOSCIELSKI D S, et al. Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters[J]. J Vasc Interv Radiol, 2000, 11(8):1079-1085.
[22] WANG W. Magnetic Resonance-guided Active Catheter Tracking[J]. Magn Reson Imaging Clin N Am, 2015, 23(4):579-589.
[23] CHUBB H, HARRISON J L, WEISS S, et al. Development, preclinical validation, and clinical translation of a cardiac magnetic resonance - electrophysiology system with active catheter tracking for ablation of cardiac arrhythmia[J]. JACC Clin Electrophysiol, 2017, 3(2):89-103.
[24] KETTENBACH J, KACHER D F, KANAN A R, et al. Intraoperative and interventional MRI: recommendations for a safe environment[J]. Minim Invasive Ther Allied Technol, 2006, 15(2):53-64.
[25] HE X, LIU M, LIU C, et al. Real-time MR-guided brain biopsy using 1.0-T open MRI scanner[J]. Eur Radiol, 2019, 29(1):85-92.
[26] LU C Y, CHEN X L, CHEN X L, et al. Clinical application of 3.0 T intraoperative magnetic resonance combined with multimodal neuronavigation in resection of cerebral eloquent area glioma[J]. Medicine (Baltimore), 2018, 97(34):e11702.
[27] OSTREM J L, ZIMAN N, GALIFIANAKIS N B, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson's disease[J]. J Neurosurg, 2016, 124(4):908-916.
[28] KILBRIDE B F, NARSINH K H, JORDAN C D, et al. MRI-guided endovascular intervention: current methods and future potential[J]. Expert Rev Med Devices, 2022, 19(10):763-778.
[29] MASOOM S N, SUNDARAM K M, GHANOUNI P, et al. Real-time MRI-guided prostate interventions[J]. Cancers (Basel), 2022, 14(8):1860.
[30] OVERDUIN C G, HEIDKAMP J, ROTHGANG E, et al. Fast 3-T MR-guided transrectal prostate biopsy using an in-room tablet device for needle guide alignment: a feasibility study[J]. Eur Radiol, 2018, 28(11):4824-4831.
[31] KLOTZ L, PAVLOVICH C P, CHIN J, et al. Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate cancer[J]. J Urol, 2021, 205(3):769-779.
[32] LEHMAN C D, ISAACS C, SCHNALL M D, et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study[J]. Radiology, 2007, 244(2):381-388.
[33] LEE C H, DERSHAW D D, KOPANS D, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer[J]. J Am Coll Radiol, 2010, 7(1):18-27.
[34] SPICK C, SCHERNTHANER M, PINKER K, et al. MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience[J]. Eur Radiol, 2016, 26(11):3908-3916.
[35] 邢宁, 张爱莲, 王建东, 等. MRI引导下乳腺病灶真空辅助穿刺活检术的应用[J]. 中国介入影像与治疗学, 2014, 11(3):136-140.
  XING N, ZHANG A L, WANG J D, et al. Application of MRI-guided vacuum-assisted breast biopsy[J]. Chin J Interv Imag Ther, 2014, 11(3):136-140.
[36] GIANFELICE D, KHIAT A, BOULANGER Y, et al. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma[J]. J Vasc Interv Radiol, 2003, 14(10):1275-1282.
[37] JOSAN S, BOULEY D M, VAN DEN BOSCH M, et al. MRI-guided cryoablation: In vivo assessment of focal canine prostate cryolesions[J]. J Magn Reson Imaging, 2009, 30(1):169-176.
Outlines

/