Journal of Diagnostics Concepts & Practice >
Research progress in genetic epidemiology of psoriasis in Chinese population
Received date: 2024-02-02
Online published: 2024-12-25
In 1984, the epidemiological survey in China suggested that the prevalence of psoriasis was 0.123 %. By 2008, a survey across six provinces and cities in China showed an increase in prevalence rate to 0.47 %. In comparison, the prevalence in European and American countries ranged from 2% to 4%. Psoriasis is a complex multi-gene genetic disease. In China, 31.26 % of psoriasis patients have a family history. The prevalence of psoriasis among first-degree and second-degree relatives of probands is 7.24% and 0.95%, respectively. The heritability is 67.04% for first-degree relatives and 46.59% for second-degree relatives, showing a trend of decreasing heritability with the increase of genetic coefficient. More than 100 susceptibility gene loci of psoriasis have been identified globally, many of which are associated with immune system-related gene variations. Approximately 38% of these loci are found in the Chinese population. Genetic linkage analysis suggests that the interleukin (IL)-15 gene is a susceptibility gene for psoriasis in Chinese individuals. Genome-Wide Association Studies (GWAS) identified multiple susceptibility gene loci associated with psoriasis. The LOC144817, RUNX1, COG6, and TP63 genes were identified in the multi-center and multi-ethnic meta-analysis. Chinese populations exhibit different allele frequencies in the HLA-I region compared to Western populations. This genetic heterogeneity suggested that different pathogenesis and therapeutic targets might exist across different populations. Researchers found multiple susceptibility loci with specific population effects, which further emphasized the importance of independent research in different populations. With the continuous discovery of susceptibility genes, an important future direction of research will be how to translate these findings into clinical applications, such as personalized treatment and drug development.
Key words: Psoriasis; Genetics; Epidemiology; Susceptible genes
CHEN Weiwei , SUN Liangdan . Research progress in genetic epidemiology of psoriasis in Chinese population[J]. Journal of Diagnostics Concepts & Practice, 2024 , 23(06) : 561 -567 . DOI: 10.16150/j.1671-2870.2024.06.001
[1] | 中华医学会皮肤性病学分会银屑病专业委员会. 中国银屑病诊疗指南(2023版)[J]. 中华皮肤科杂志, 2023, 56(07): 573-625. |
Committee on Psoriasis, Chinese Society of Dermatology. Guideline for the diagnosis and treatment of psoriasis in China (2023 edition)[J]. Chin J Dermatol, 2023, 56(7): 573-625. | |
[2] | ZHANG X, WANG H, TE-SHAO H, et al. The genetic epidemiology of psoriasis vulgaris in Chinese Han[J]. Int J Dermatol, 2002, 41(10):663-669. |
[3] | 冯小燕, 徐丽敏. 寻常型银屑病遗传流行病学分析[J]. 中国城乡企业卫生, 2019, 34(3):4-6. |
FENG X Y, XV L M. Genetic epidemiological analysis of psoriasis vulgaris[J]. Chin J Urban Rural Enterprise Hyg, 2019, 34(3):4-6. | |
[4] | ZHANG X J, YAN K L, WANG Z M, et al. Polymorphisms in interleukin-15 gene on chromosome 4q31.2 are associated with psoriasis vulgaris in Chinese population[J]. J Invest Dermatol, 2007, 127(11):2544-2551. |
[5] | ?Y?Y?SKA-GRANICA B, TRZASKOWSKI B, NIEWIECZERZA? S, et al. Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors[J]. Eur J Med Chem, 2017, 136:543-547. |
[6] | STRANGER B E, STAHL E A, RAJ T. Progress and promise of genome-wide association studies for human complex trait genetics[J]. Genetics, 2011, 187(2):367-383. |
[7] | 张学军. 全基因组关联分析对银屑病遗传学研究的启示[J]. 浙江大学学报(医学版), 2009, 38(4):333-337. |
ZHANG X J. Enlightenment from genome-wide association study to genetics of psoriasis[J]. J Zhejiang Univ (Med Sci), 2009, 38(4):333-337. | |
[8] | ZHANG X J, HUANG W, YANG S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21[J]. Nat Genet, 2009, 41(2):205-210. |
[9] | SUN L D, CHENG H, WANG Z X, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population[J]. Nat Genet, 2010, 42(11):1005-1009. |
[10] | SUN L, CAO Y, HE N, et al. Association between LCE gene polymorphisms and psoriasis vulgaris among Mongolians from Inner Mongolia[J]. Arch Dermatol Res, 2018, 310(4):321-327. |
[11] | YIN X, LOW H Q, WANG L, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility[J]. Nat Commun, 2015, 6:6916. |
[12] | CHEN W, WANG W, YONG L, et al. Genome-wide meta-analysis identifies ten new psoriasis susceptibility loci in the Chinese population[J]. J Genet Genomics, 2022, 49(2):177-180. |
[13] | TANG H, JIN X, LI Y, et al. A large-scale screen for coding variants predisposing to psoriasis[J]. Nat Genet, 2014, 46(1):45-50. |
[14] | ZUO X, SUN L, YIN X, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis[J]. Nat Commun, 2015, 6:6793. |
[15] | ZHEN Q, YANG Z, WANG W, et al. Genetic study on small insertions and deletions in psoriasis reveals a role in complex human diseases[J]. J Invest Dermatol, 2019, 139(11):2302-2312.e14. |
[16] | ZHANG C, QIN Q, LI Y, et al. Multifactor dimensionality reduction reveals the effect of interaction between ERAP1 and IFIH1 polymorphisms in psoriasis susceptibility genes[J]. Front Genet, 2022, 13:1009589. |
[17] | XU H, ZHEN Q, BAI M, et al. Deep sequencing of 1320 genes reveals the landscape of protein-truncating variants and their contribution to psoriasis in 19,973 Chinese individuals[J]. Genome Res, 2021, 31(7):1150-1158. |
[18] | ZHEN Q, ZHANG Y, YU Y, et al. Three novel structural variations at the major histocompatibility complex and IL12B predispose to psoriasis[J]. Br J Dermatol, 2022, 186(2):307-317. |
[19] | ZHOU F, CAO H, ZUO X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease[J]. Nat Genet, 2016, 48(7):740-746. |
[20] | LIU M, ZHANG G, WANG Z, et al. FOXE1 contributes to the development of psoriasis by regulating WNT5A[J]. J Invest Dermatol, 2023, 143(12):2366-2377.e7. |
[21] | GAO Y, NA M, YAO X, et al. Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis[J]. Front Immunol, 2023, 14:1265517. |
[22] | TANG L, WANG M, SHEN C, et al. Assay for transposase-accessible chromatin using sequencing analysis reveals a widespread increase in chromatin accessibility in psoriasis[J]. J Invest Dermatol, 2021, 141(7):1745-1753. |
[23] | TSOI L C, SPAIN S L, KNIGHT J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity[J]. Nat Genet, 2012, 44(12):1341-1348. |
[24] | FURUE M, FURUE K, TSUJI G, et al. Interleukin-17A and keratinocytes in psoriasis[J]. Int J Mol Sci, 2020, 21(4):1275. |
[25] | GRIFFITHS C E M, ARMSTRONG A W, GUDJONSSON J E, et al. Psoriasis[J]. Lancet, 2021, 397(10281):1301-1315. |
[26] | YAO Y, VENT-SCHMIDT J, MCGEOUGH M D, et al. Tr1 cells, but not Foxp3+ regulatory t cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism[J]. J Immunol, 2015, 195(2):488-497. |
[27] | PAN Y, YOU Y, SUN L, et al. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation[J]. Br J Pharmacol, 2021, 178(24):4907-4922. |
[28] | MAO Y, GE H, CHEN W, et al. RasGRP1 influences imiquimod-induced psoriatic inflammation via T-cell activation in mice[J]. Int Immunopharmacol, 2023, 122:110590. |
[29] | GUO M, ZHUANG H, SU Y, et al. SIRT3 alleviates imiquimod-induced psoriatic dermatitis through deacetylation of XBP1s and modulation of TLR7/8 inducing IL-23 production in macrophages[J]. Front Immunol, 2023, 14:1128543. |
[30] | YU Y, CHEN W, LI B, et al. Cutaneous calcium/calmodulin-dependent protein kinase II-γ-positive sympathetic nerves secreting norepinephrine dictate psoriasis[J]. Adv Sci (Weinh), 2024, 11(23):e2306772. |
[31] | YONG L, YU Y, LI B, et al. Calcium/calmodulin-dependent protein kinase Ⅳ promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice[J]. Nat Commun, 2022, 13(1):4255. |
[32] | XU J, LIU M, YU M, et al. RasGRP1 is a target for VEGF to induce angiogenesis and involved in the endothelial-protective effects of metformin under high glucose in HUVECs[J]. IUBMB Life, 2019, 71(9):1391-1400. |
[33] | DOPYTALSKA K, CIECHANOWICZ P, WISZNIEWSKI K, et al. The role of epigenetic factors in psoriasis[J]. Int J Mol Sci, 2021, 22(17):9294. |
[34] | FOGEL O, RICHARD-MICELI C, TOST J. Epigenetic changes in chronic inflammatory diseases[J]. Adv Protein Chem Struct Biol, 2017, 106:139-189. |
[35] | MOUNSEY S J, KULAKOV E. Psoriasis[J]. Br J Hosp Med (Lond), 2018, 79(8):C114-C117. |
[36] | CHEN M, WANG Y, YAO X, et al. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis[J]. J Dermatol Sci, 2016, 83(1):10-16. |
[37] | ZHANG P, SU Y, CHEN H, et al. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris[J]. J Dermatol Sci, 2010, 60(1):40-42. |
[38] | ZHANG P, ZHAO M, LIANG G, et al. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris[J]. J Autoimmun, 2013, 41:17-24. |
[39] | ZONG W, GE Y, HAN Y, et al. Hypomethylation of HLA-DRB1 and its clinical significance in psoriasis[J]. Oncotarget, 2017, 8(7):12323-12332. |
[40] | QIAO M, LI R, ZHAO X, et al. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7[J]. Exp Cell Res, 2018, 363(2):243-254. |
[41] | 景志杰, 付明阳, 王春芳. 过表达miR-31及其下游靶基因Sfn、SuFu在银屑病动物模型中的作用[J]. 重庆医科大学学报, 2024, 49(11):1394-1401. |
JING Z J, FU M Y, WANG C F. Role of overexpression of microRNA-31 and its downstream target genesSfn and SuFu in animal models of psoriasis[J]. J Chongqing Med Univ, 2024, 49(11):1394-1401. | |
[42] | FENG H, WU R, ZHANG S, et al. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice[J]. J Dermatol, 2020, 47(2):147-154. |
[43] | WU R, ZENG J, YUAN J, et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation[J]. J Clin Invest, 2018, 128(6):2551-2568. |
[44] | YAN J J, QIAO M, LI R H, et al. Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis[J]. Br J Dermatol, 2019, 180(2):365-372. |
[45] | CHEN Y, XIANG Y, MIAO X, et al. METTL14 promotes IL-6-induced viability, glycolysis and inflammation in HaCaT cells via the m6A modification of TRIM27[J]. J Cell Mol Med, 2024, 28(3):e18085. |
[46] | XIAO Z, WANG S, TIAN Y, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7):112684. |
[47] | WANG Y, HUANG J, JIN H. Reduction of Methyltransferase-like 3-mediated RNA N6-methyladenosine exacerbates the development of psoriasis vulgaris in imiquimod-induced psoriasis-like mouse model[J]. Int J Mol Sci, 2022, 23(20):12672. |
[48] | LIU L, JU M, HU Y, et al. Genome-wide DNA methylation and transcription analysis in psoriatic epidermis[J]. Epigenomics, 2023, 15(4):209-226. |
[49] | ZHOU F, WANG W, SHEN C, et al. Epigenome-wide association analysis identified nine skin dna methylation loci for psoriasis[J]. J Invest Dermatol, 2016, 136(4):779-787. |
[50] | ZHANG P, SU Y, ZHAO M, et al. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris[J]. Eur J Dermatol, 2011, 21(4):552-557. |
[51] | 张成, 梁波, 张莉, 等. 儿童玫瑰糠疹和寻常型银屑病皮肤镜特征分析[J]. 安徽医学, 2024, 45(05):570-573. |
ZHANG C, LIANG B, ZHANG L, et al. Analysis of dermatoscopic features of children with pityriasis rosea and psoriasis vulgaris[J]. Anhui Med J, 2024, 45(5):570-573. | |
[50] | 章鹏飞, 张正勇. 司库奇尤单抗及308 nm准分子光治疗中重度斑块型银屑病的短期疗效对比[J]. 安徽医学, 2023, 44(11):1319-1322. |
ZHANG PF, ZHANG ZY. Comparison of Short term Efficacy of Sikuximab and 308 nm Excimer Phototherapy for Moderate to Severe Plaque Psoriasis[J]. Anhui Med J, 2023, 44(11):1319-1322. |
/
〈 |
|
〉 |