综述

表观遗传修饰:糖尿病防治新靶点

展开
  • 南京中医药大学附属中西医结合医院内分泌科江苏省中医药研究院瘿病证治重点研究室,江苏 南京 210028

收稿日期: 2021-03-30

  网络出版日期: 2022-07-25

基金资助

国家自然科学基金项目(81800756);江苏省中医药领军人才培养项目(SLJ0209)

本文引用格式

韦晓, 孙烁烁, 陈国芳, 刘超 . 表观遗传修饰:糖尿病防治新靶点[J]. 内科理论与实践, 2021 , 16(06) : 422 -426 . DOI: 10.16138/j.1673-6087.2021.06.011

参考文献

[1] Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes[J]. Cell Metab, 2019, 29(5): 1028-1044.
[2] Feinberg AP. The key role of epigenetics in human disease prevention and mitigation[J]. N Engl J Med, 2018, 378(14): 1323-1334.
[3] Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019, 15(6): 327-345.
[4] Rosen ED, Kaestner KH, Natarajan R, et al. Epigenetics and epigenomics: implications for diabetes and obesity[J]. Diabetes, 2018, 67(10): 1923-1931.
[5] Singh R, Chandel S, Dey D, et al. Epigenetic modification and therapeutic targets of diabetes mellitus[J]. Biosci Rep, 2020, 40(9): BSR20202160.
[6] Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 590-607.
[7] Johnson ND, Conneely KN. The role of DNA methylation and hydroxymethylation in immunosenescence[J]. Ageing Res Rev, 2019, 51: 11-23.
[8] Xu GL, Bochtler M. Reversal of nucleobase methylation by dioxygenases[J]. Nat Chem Biol, 2020, 16(11): 1160-1169.
[9] Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity[J]. Nature, 2017, 541(7635): 81-86.
[10] Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study[J]. Lancet Diabetes Endocrinol, 2015, 3(7): 526-534.
[11] Paul DS, Teschendorff AE, Dang MA, et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types[J]. Nat Commun, 2016, 7: 13555.
[12] Hjort L, Martino D, Grunnet LG, et al. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children[J] JCI Insight, 2018, 3(17): e122572.
[13] Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics[J]. Nat Rev Genet, 2017, 18(1): 51-66.
[14] Bates SE. Epigenetic therapies for cancer[J]. N Engl J Med, 2020, 383(7): 650-663.
[15] Gao M, Deng XL, Liu ZH, et al. Liraglutide protects β-cell function by reversing histone modification of Pdx-1 proximal promoter in catch-up growth male rats[J]. J Diabetes Complications, 2018, 32(11): 985-994.
[16] Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156.
[17] Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J]. J Cell Biochem, 2010, 110(6): 1306-1313.
[18] Hong S, Zhou W, Fang B, et al. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion[J]. Nat Med, 2017, 23(2): 223-234.
[19] Asif S, Morrow NM, Mulvihill EE, et al. Understanding dietary intervention-mediated epigenetic modifications in metabolic diseases[J]. Front Genet, 2020, 11: 590369.
[20] Calderon D, Nguyen MLT, Mezger A, et al. Landscape of stimulation-responsive chromatin across diverse human immune cells[J]. Nat Genet, 2019, 51(10): 1494-1505.
[21] Wei Z, Yoshihara E, He N, et al. Vitamin D switches BAF complexes to protect β cells[J]. Cell, 2018, 173(5): 1135-1149.
[22] Local A, Huang H, Albuquerque CP, et al. Identification of H3K4me1-associated proteins at mammalian enhancers[J]. Nat Genet, 2018, 50(1): 73-82.
[23] Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes[J]. Cell Metab, 2020, 32(5): 844-859.
[24] Skvortsova K, Iovino N, Bogdanoviéc O. Functions and mechanisms of epigenetic inheritance in animals[J]. Nat Rev Mol Cell Biol, 2018, 19(12): 774-790.
[25] Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature, 2004, 432(7014): 226-230.
[26] Al-Muhtaresh HA, Al-Kafaji G. Evaluation of two-diabetes related microRNAs suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus[J]. J Clin Med, 2018, 7(2): 12.
[27] López-Beas J, Capilla-González V, Aguilera Y, et al. miR-7 modulates hESC differentiation into insulin-producing beta-like cells and contributes to cell maturation[J]. Mol Ther Nucleic Acids, 2018, 12: 463-477.
[28] Belgardt BF, Ahmed K, Spranger M, et al. The micro-RNA-200 family regulates pancreatic beta cell survival in type 2 diabetes[J]. Nat Med, 2015, 21(6): 619-627.
[29] Huang Q, You W, Li Y, et al. Glucolipotoxicity-inhibited miR-299-5p regulates pancreatic β-cell function and survival[J]. Diabetes, 2018, 67(11): 2280-2292.
[30] Sui M, Chen G, Mao X, et al. Gegen qinlian decoction ameliorates hepatic insulin resistance by silent information regulator1 (SIRT1)-dependent deacetylation of forkhead box O1(FOXO1)[J]. Med Sci Monit, 2019, 25: 8544-8553.
[31] Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011, 286(13): 11837-11848.
[32] Guo Z, Cao Q, Zhao Z, et al. Biogenesis, features, functions, and disease relationships of a specific circular RNA: CDR1as[J]. Aging Dis, 2020, 11(4): 1009-1020.
[33] Shi R, Chen Y, Liao Y, et al. Research status of differentially expressed noncoding RNAs in type 2 diabetes patients[J]. Biomed Res Int, 2020, 2020: 3816056.
[34] Akerman I, Tu Z, Beucher A, et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks[J]. Cell Metab, 2017, 25(2): 400-411.
[35] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200.
[36] Wang Y, Sun J, Lin Z, et al. m6A mRNA methylation controls functional maturation in neonatal murine β-cells[J]. Diabetes, 2020, 69(8): 1708-1722.
[37] Li X, Jiang Y, Sun X, et al. METTL3 is required for maintaining β-cell function[J]. Metabolism, 2021, 116: 154702.
[38] Li Y, Zhang Q, Cui G, et al. m6A regulates liver metabolic disorders and hepatogenous diabetes[J]. Genomics Proteomics Bioinformatics, 2020, 18(4): 371-383.
[39] Cencioni C, Spallotta F, Greco S, et al. Epigenetic mechanisms of hyperglycemic memory[J]. Int J Biochem Cell Biol, 2014, 51: 155-158.
[40] Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature, 2011, 474(7353): 649-653.
[41] Shen W, Tremblay MS, Deshmukh VA, et al. Small-molecule inducer of β cell proliferation identified by high-throughput screening[J]. J Am Chem Soc, 2013, 135(5): 1669-1672.
[42] Song MY, Kim EK, Moon WS, et al. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-κB pathway[J]. Toxicol Appl Pharmacol, 2009, 235(1): 57-67.
[43] Liu X, Liu J, Xiao W, et al. SIRT1 Regulates N6-methyladenosine RNA modification in hepatocarcinogenesis by inducing RANBP2-dependent FTO SUMOylation[J]. Hepatology, 2020, 72(6): 2029-2050.
文章导航

/