成人急性淋巴细胞白血病治疗进展
收稿日期: 2023-10-26
网络出版日期: 2024-09-09
基金资助
甘肃省科技计划(创新基地和人才计划)项目(21JR7RA015);甘肃省科技计划项目(22YF7FA106);联勤保障部队第九四〇医院科研项目(2021yxky078)
Progress in treatment of adult acute lymphoblastic leukemia
Received date: 2023-10-26
Online published: 2024-09-09
急性淋巴细胞白血病 (acute lymphoblastic leukemia,ALL) 是以原始幼稚淋巴细胞异常增殖并抑制正常造血的血液系统恶性肿瘤,起源于B系或T系淋巴祖细胞,占成人急性白血病的20%~30%。虽然初诊成人ALL患者在多药联合化疗后完全缓解率可达80%以上,但仍有大部分患者最终出现复发、难治,5年长期生存率仅20%~40%,其临床特点及预后差异较大。近年来,随着靶向药物、免疫治疗、嵌合抗原受体(chimeric antigen receptor,CAR)-T细胞疗法等问世,极大地改善了成人ALL患者的临床结局。本文详细综述目前成人ALL新型治疗药物的进展。
刘文慧 , 吴涛 , 张曦 . 成人急性淋巴细胞白血病治疗进展[J]. 内科理论与实践, 2024 , 19(03) : 201 -206 . DOI: 10.16138/j.1673-6087.2024.03.10
Acute lymphoblastic leukemia (ALL) is a hematological malignancy with abnormal proliferation of primitive naive lymphocytes and inhibition of normal hematopoiesis. It originates from B-lineage or T-lineage lymphoid progenitor cells, accounting for 20%-30% of adult acute leukemia. Although the complete remission rate of newly diagnosed adult ALL patients after multi-drug combination chemotherapy can reach more than 80%, most of the patients still show relapse and refractory. The 5-year long term survival rate in the patients is only 20%-40% and the clinical characteristics and prognosis are quite different. In recent years, with the advent of targeted drugs, immunotherapy, and chimeric antigen receptor (CAR) -T cell therapy, the clinical outcomes of adult ALL patients have been greatly improved. This article reviews the current progress of new therapeutic drugs for adult ALL in detail.
[1] | 中华医学会血液学分会实验诊断学组. 急性淋巴细胞白血病微小残留病检测与临床解读中国专家共识(2023年版)[J]. 中华血液学杂志, 2023, 44(4):267-275. |
[2] | 中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性淋巴细胞白血病诊断与治疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(9):705-716. |
[3] | 徐婷婷, 王卫敏, 付国美, 等. 成人急性淋巴细胞白血病患者的临床特点与疗效分析[J]. 中国实验血液学杂志, 2020, 28(1):68-75. |
[4] | Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults[J]. Cancers (Basel), 2022, 14(7):1805. |
[5] | Pfeifer H, Cazzaniga G, van der Velden VHJ, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1[J]. Leukemia, 2019, 33(8):1910-1922. |
[6] | Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study[J]. Lancet Haematol, 2018, 5(12):e618-e627. |
[7] | Chiaretti S, Ansuinelli M, Vitale A, et al. A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients[J]. Haematologica, 2021, 106(7):1828-1838. |
[8] | Wieduwilt MJ, Yin J, Wetzler M, et al. Dasatinib and dexamethasone followed by hematopoietic cell transplantation for adults with Ph-positive ALL[J]. Blood Adv, 2021, 5(22):4691-4700. |
[9] | Sugiura I, Doki N, Hata T, et al. Dasatinib-based 2-step induction for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Blood Adv, 2022, 6(2):624-636. |
[10] | Martinelli G, Papayannidis C, Piciocchi A, et al. INCB84344-201: ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia[J]. Blood Adv, 2022, 6(6):1742-1753. |
[11] | Foà R, Bassan R, Vitale A, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults[J]. N Engl J Med, 2020, 383(17):1613-1623. |
[12] | Jabbour E, Short NJ, Jain N, et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial[J]. Lancet Haematol, 2023, 10(1):e24-e34. |
[13] | Jain N, Maiti A, Ravandi F, et al. Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia[J]. Am J Hematol, 2021, 96(8):1000-1007. |
[14] | Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia[J]. Lancet, 2021, 398(10299):491-502. |
[15] | Gu B, Shi BY, Zhang X, et al. Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells[J]. Bone Marrow Transplant, 2021, 56(1):91-100. |
[16] | Massimino M, Vigneri P, Stella S, et al. Combined inhibition of Bcl2 and Bcr-Abl1 exercises anti-leukemia activity but does not eradicate the primitive leukemic cells[J]. J Clin Med, 2021, 10(23):5606. |
[17] | Short NJ, Konopleva M, Kadia T, et al. An effective chemotherapy-free regimen of ponatinib plus venetoclax for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Am J Hematol, 2021, 96(7):E229-E232. |
[18] | Wang H, Yang C, Shi T, et al. Venetoclax-ponatinib for T315I/compound-mutated Ph+ acute lymphoblastic leukemia[J]. Am J Hematol, 2021, 96(7):E229-E232. |
[19] | Brown PA, Shah B, Advani A, et al. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(9):1079-1109. |
[20] | Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults[J]. Blood, 2017, 129(5):572-581. |
[21] | Roberts KG, Gu Z, Payne-Turner D, et al. High frequency and poor outcome of philadelphia chromosome-like acute lymphoblastic leukemia in adults[J]. J Clin Oncol, 2017, 35(4):394-401. |
[22] | Samra B, Jabbour E, Ravandi F, et al. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions[J]. J Hematol Oncol, 2020, 13(1):70. |
[23] | Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia[J]. Blood, 2017, 130(19):2064-2072. |
[24] | Kim SK, Knight DA, Jones LR, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias[J]. Genes Dev, 2018, 32(11-12):849-864. |
[25] | 梁爱斌, 李萍. 成人急性淋巴细胞白血病诊断与治疗中国指南2021年版解读(Ph阴性,非复发难治部分)[J]. 临床血液学杂志, 2022, 35(3):165-167. |
[26] | Kopmar NE, Cassaday RD. How I prevent and treat central nervous system disease in adults with acute lymphoblastic leukemia[J]. Blood, 2023, 141(12):1379-1388. |
[27] | Kruse A, Abdel-Azim N, Kim HN, et al. Minimal residual disease detection in acute lymphoblastic leukemia[J]. Int J Mol Sci, 2020, 21(3):1054. |
[28] | G?kbuget N, Dombret H, Giebel S, et al. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia[J]. Hematology, 2019, 24(1):337-348. |
[29] | Kantarjian H, Stein A, G?kbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia[J]. N Engl J Med, 2017, 376(9):836-847. |
[30] | Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia[J]. Cancer, 2019, 125(14):2474-2487. |
[31] | Sasaki K, Kantarjian H, Jabbour E, et al. Sequential combination of low-intensity chemotherapy (mini-hyper-CVD) plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed/refractory Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL)[J]. Blood, 2018, 132 Suppl: 553. |
[32] | Advani AS, Moseley A, Liedtke M, et al. SWOG 1312 final results: a phase 1 trial of inotuzumab in combination with CVP (cyclosphosphamide, vincristine, prednisone) for relapsed/refractory CD22+ acute leukemia[J]. Blood, 2019, 134 Suppl: 227. |
[33] | Richard-Carpentier G, Kantarjian HM, Short NJ, et al. Updated results from the phase Ⅱ study of hyper-CVAD in sequential combination with blinatumomab in newly diagnosed adults with B-cell acute lymphoblastic leukemia (ALL)[J]. Blood, 2019, 134, 3807. |
[34] | Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5):439-448. |
[35] | Jiang H, Li C, Yin P, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Am J Hematol, 2019, 94(10):1113-1122. |
[36] | Bardelli V, Arniani S, Pierini V, et al. T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness[J]. Genes (Basel), 2021, 12(8):1118. |
[37] | Jain N, Lamb AV, O'Brien S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype[J]. Blood, 2016, 127(15): 1863-1869. |
[38] | La Starza R, Cambò B, Pierini A, et al. Venetoclax and bortezomib in relapsed/refractory early T-cell precursor acute lymphoblastic leukemia[J]. JCO Precis Oncol, 2019, 3: PO.19.00172. |
[39] | Zhang X, Li J, Jin J, et al. Relapsed/refractory early T-cell precursor acute lymphoblastic leukemia was salvaged by venetoclax plus HAG regimen[J]. Ann Hematol, 2020, 99(2):395-397. |
[40] | Arora S, Vachhani P, Bachiashvili K, et al. Venetoclax with chemotherapy in relapse/refractory early T-cell precursor acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2021, 62(9):2292-2294. |
[41] | Kong J, Chen N, Li M, et al. Venetoclax and decitabine in refractory TP53-mutated early T-cell precursor acute lymphoblastic leukemia[J]. Ann Hematol, 2022, 101(3):697-699. |
[42] | Richard-Carpentier G, Jabbour E, Short NJ, et al. Clinical experience with venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(4):212-218. |
[43] | Khogeer H, Rahman H, Jain N, et al. Early T precursor acute lymphoblastic leukaemia/lymphoma shows differential immunophenotypic characteristics including frequent CD33 expression and in vitro response to targeted CD33 therapy[J]. Br J Haematol, 2019, 186(4):538-548. |
[44] | Bride KL, Vincent TL, Im SY, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia[J]. Blood, 2018, 131(9):995-999. |
[45] | Mirgh S, Ahmed R, Agrawal N, et al. Will daratumumab be the next game changer in early thymic precursor-acute lymphoblastic leukaemia?[J]. Br J Haematol, 2019, 187(2):e33-e35. |
[46] | Sin CF, Man PM. Early T-cell precursor acute lymphoblastic leukemia: diagnosis, updates in molecular pathogenesis, management, and novel therapies[J]. Front Oncol, 2021, 11:750789. |
[47] | Png YT, Vinanica N, Kamiya T, et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies[J]. Blood Adv, 2017, 1(25):2348-2360. |
[48] | Mamonkin M, Rouce RH, Tashiro H, et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies[J]. Blood, 2015, 126(8):983-992. |
[49] | Abaza Y, M Kantarjian H, Faderl S, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma[J]. Am J Hematol, 2018, 93(1):91-99. |
/
〈 |
|
〉 |