论著

通过机器学习识别急性胰腺炎的铜死亡特征基因

  • 汪卓鑫 ,
  • 黄昕洋 ,
  • 金依洵 ,
  • 王立夫
展开
  • 上海交通大学医学院附属瑞金医院消化内科,上海 200025
王立夫 E-mail: lifuwang@sjtu.edu.cn

收稿日期: 2023-12-27

  网络出版日期: 2024-11-11

基金资助

国家自然科学基金项目(81870385);国家自然科学基金项目(81672719)

Bioinformatics analysis and identification of cuproptosis characteristic genes for acute pancreatitis by machine learning

  • WANG Zhuoxin ,
  • HUANG Xinyang ,
  • JIN Yixun ,
  • WANG Lifu
Expand
  • Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2023-12-27

  Online published: 2024-11-11

摘要

目的:发掘急性胰腺炎(acute pancreatitis, AP)中铜死亡的特征基因。方法:提取GSE194331数据集中铜死亡相关基因(cuproptosis-related genes, CRG)的表达,进行差异分析和免疫细胞相关性分析。根据CRG表达分出不同亚型,并利用基因集变异分析(gene set variation analysis, GSVA)富集代谢通路。采用广义线性模型(generalized linear models, GLM)、随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和极端梯度提升(extreme gradient boosting, XGB)4种机器学习算法筛选疾病特征基因。结果:分析得到AP中差异表达CRG共13个(P<0.05)。CRG之间不仅存在不同程度的相关性,且与多种免疫细胞也具有相关性(P<0.05)。通过一致性聚类分析得到的2个亚型间有4条免疫相关通路存在差异,其中T细胞受体信号通路值得注意。进一步分析发现多种T细胞在两亚型间有显著差异(P<0.05)。每种机器学习算法各筛选出5个特征基因,得到了可作为下一个研究目标的二氢脂酰胺脱氢酶(dihydrolipoamide dehydrogenase, DLD)。结论:基于CRG的机器学习和生物信息学分析,挖掘AP中铜死亡相关基因,发现潜在的生物标志物。

本文引用格式

汪卓鑫 , 黄昕洋 , 金依洵 , 王立夫 . 通过机器学习识别急性胰腺炎的铜死亡特征基因[J]. 内科理论与实践, 2024 , 19(04) : 224 -230 . DOI: 10.16138/j.1673-6087.2024.04.02

Abstract

Objective To discover the characteristic genes of cuproptosis in acute pancreatitis (AP). Methods The expression of cuproptosis-related genes (CRG) in the GSE1943 dataset was extracted and performed differential analysis and immune cell correlation analysis. The different subtypes were classified according to the expression of CRG, and metabolic pathway enrichment was performed using gene set variation analysis. Four machine learning algorithms, including generalized linear models, random forest, support vector machine and extreme gradient boosting were used to screen disease characteristic genes. Results A total of 13 CRG were differentially expressed in AP (P<0.05), and CRG were not only correlated to each other in different degrees, but also had correlation with multiple immune cells (P<0.05). There were four immune-related pathways among the two subtypes obtained by cluster analysis, in which the T-cell receptor signaling pathway was noteworthy. Further analysis revealed significant difference between the two subtypes of multiple T cells (P<0.05). Each machine learning algorithm screened out five characteristic genes, and dihydrolipoamide dehydrogenase (DLD) was obtained as the next target of research. Conclusions CRG-based machine learning and bioinformatics analyses could be used to explore CRG in AP to discover potential biomarkers.

参考文献

[1] Gardner TB. Acute pancreatitis[J]. Ann Intern Med, 2021, 174(2):ITC17-ITC32.
[2] Staubli SM, Oertli D, Nebiker CA. Laboratory markers predicting severity of acute pancreatitis[J]. Crit Rev Clin Lab Sci, 2015, 52(6):273-83.
[3] Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32(5): 417-418.
[4] Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
[5] Chen X, Dou QP, Liu J, et al. Targeting ubiquitin-proteasome system with copper complexes for cancer therapy[J]. Front Mol Biosci, 2021,8:649151.
[6] Jiang Y, Huo Z, Qi X, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine (Lond), 2022, 17(5): 303-324.
[7] Lv H, Liu X, Zeng X, et al. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma[J]. Front Pharmacol, 2022, 13: 930041.
[8] Song Q, Zhou R, Shu F, et al. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer[J]. Front Immunol, 2022, 13: 958368.
[9] Zhang Z, Zeng X, Wu Y, et al. Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 925618.
[10] Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7): 1982-1996.
[11] Xu C, Jackson SA. Machine learning and complex biological data[J]. Genome Biol, 2019, 20(1): 76.
[12] Morrissey MB, Goudie IBJ. Analytical results for directional and quadratic selection gradients for log-linear models of fitness functions[J]. Evolution, 2022, 76(7): 1378-1390.
[13] Blanchet L, Vitale R, van Vorstenbosch R, et al. Constructing bi-plots for random forest[J]. Anal Chim Acta, 2020,1131:146-155.
[14] Wang H, Shao Y, Zhou S, et al. Support vector machine classifier via L0/1 soft-margin loss[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10):7253-7265.
[15] Fernández-Delgado M, Sirsat MS, Cernadas E, et al. An extensive experimental survey of regression methods[J]. Neural Netw, 2019,111:11-34.
[16] 刘耀阳, 吴歆, 周凌, 等. 基于生物标志物探索系统性红斑狼疮中医药治疗机制的研究进展[J]. 药学实践与服务, 2023, 41(4):197-201.
[17] Bao JH, Lu WC, Duan H, et al. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas[J]. Front Immunol, 2022,13:933973.
[18] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
[19] Scharl T, Grü B, Leisch F. Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects[J]. Bioinformatics, 2010, 26(3): 370-377.
[20] Liu J, Liu Y, Wang Y, et al. HMGB1 is a mediator of cuproptosis-related sterile inflammation[J]. Front Cell Dev Biol, 2022,10:996307.
[21] Lee PJ, Papachristou GI. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496.
[22] Zhang T, Gan Y, Zhu S. Association between autophagy and acute pancreatitis[J]. Front Genet, 2023, 14: 998035.
[23] Al Mamun A, Suchi SA, Aziz MA, et al. Pyroptosis in acute pancreatitis and its therapeutic regulation[J]. Apoptosis, 2022, 27(7-8): 465-481.
[24] Liu J, Song X, Kuang F, et al. NUPR1 is a critical repressor of ferroptosis[J]. Nat Commun, 2021, 12(1): 647.
[25] Ma D, Li C, Jiang P, et al. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis[J]. Dig Dis Sci, 2021, 66(2):483-492.
[26] Brautigam CA, Wynn RM, Chuang JL, et al. Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex[J]. Structure, 2006, 14(3):611-621.
[27] Fan J, Shan C, Kang HB, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex[J]. Mol Cell, 2014, 53(4):534-548.
[28] Wang Y, Guo YR, Liu K, et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase[J]. Nature, 2017, 552(7684):273-277.
[29] Dayan A, Fleminger G, Ashur-Fabian O. Targeting the Achilles’ heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase[J]. Oncogene, 2019, 38(25):5050-5061.
[30] Shin D, Lee J, You JH, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J]. Redox Biol, 2020,30:101418.
[31] Dabrowski A, Osada J, Dabrowska MI, et al. Monocyte subsets and natural killer cells in acute pancreatitis[J]. Pancreatology, 2008, 8(2):126-134.
[32] Zhou Q, Tao X, Xia S, et al. T lymphocytes: a promising immunotherapeutic target for pancreatitis and pancreatic cancer?[J]. Front Oncol, 2020,10:382.
[33] Pinhu L, Qin Y, Xiong B, et al. Overexpression of Fas and FasL is associated with infectious complications and severity of experimental severe acute pancreatitis by promoting apoptosis of lymphocytes[J]. Inflammation, 2014, 37(4):1202-1212.
[34] Liang W, Han C, Zhang D, et al. Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy[J]. Acta Biomater, 2024,175:341-352.
[35] Liu T, Zhou Z, Zhang M, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor[J]. J Control Release, 2023,362:502-512.
[36] Karanikas V, Rowley MJ, MacKay IR, et al. Autoreactive cytotoxic T cells in mice are induced by immunization with a conserved mitochondrial enzyme in Freund’s complete adjuvant[J]. Immunology, 1999, 97(2): 264-271.
文章导航

/