论著

血清MG53水平与冠状动脉钙化的相关性研究

  • 张煜 ,
  • 查晴 ,
  • 杨玲 ,
  • 叶佳雯 ,
  • 杨克 ,
  • 刘艳
展开
  • 1.上海交通大学医学院附属第九人民医院心血管内科,上海 200011
    2.上海交通大学医学院附属瑞金医院心血管内科,上海 200025
刘艳 E-mail:liuyan_ivy@126.com

收稿日期: 2024-01-22

  网络出版日期: 2025-01-16

基金资助

国家自然科学基金项目(82070401)

Study on the correlation between serum MG53 level and coronary artery calcification

  • ZHANG Yu ,
  • ZHA Qing ,
  • YANG Ling ,
  • YE Jiawen ,
  • YANG Ke ,
  • LIU Yan
Expand
  • 1. Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    2. Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2024-01-22

  Online published: 2025-01-16

摘要

目的: 研究血清MG53水平与冠状动脉钙化(coronary artery calcification,CAC)严重程度及患者预后的相关性。方法: 纳入2016—2018年因胸闷等不适入住上海交通大学医学院附属瑞金医院心血管内科治疗,经冠状动脉CT血管成像(CT angiography,CTA)检查确诊存在CAC的患者。使用Agatston积分计算CAC评分(CAC score, CACS),使用酶联免疫吸附法检测血清MG53水平,并对患者进行为期5年的随访,记录心血管终点事件发生情况。根据CACS和血清MG53水平对患者进行分组。使用Logistic回归分析血清MG53水平与患者CAC水平的相关性;使用Kaplan-Meier曲线和COX比例风险模型分析血清MG53水平对CAC患者预后的影响。使用R软件(4.2.2版)计算血清MG53水平预测终点事件的最佳截断值。结果: 共纳入患者195例。与低风险组相比,高风险组患者的血清MG53水平明显降低[57.717(28.548,139.965)pg/mL比33.553(13.509,56.952) pg/mL,P<0.001]。血清MG53水平与CAC病变程度独立相关(OR=0.984,95%CI:0.971~0.994,P<0.007)。低MG53水平患者心血管事件的发生风险显著升高(OR=0.282,95%CI:0.160~0.498,P<0.001)。血清MG53水平的最佳截断值为18.36 pg/mL。结论: 血清MG53水平可能与CAC的严重程度以及患者预后相关,提示血清MG53水平可能是预测CAC及患者预后的生物标志物。

本文引用格式

张煜 , 查晴 , 杨玲 , 叶佳雯 , 杨克 , 刘艳 . 血清MG53水平与冠状动脉钙化的相关性研究[J]. 内科理论与实践, 2024 , 19(05) : 303 -309 . DOI: 10.16138/j.1673-6087.2024.05.03

Abstract

Objective To study the correlation between serum MG53 level and coronary artery calcification (CAC), and the correlation between serum MG53 level and the prognosis of patients with CAC. Methods A total of 195 patients admitted to the Department of Cardiovascular Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from 2016 to 2018 due to chest distress and other discomforts were selected. CAC was confirmed by coronary CT angiography (CTA) in all patients. Agatston integral was used to calculate CAC score, and serum MG53 level was detected by enzyme-linked immunosorbent assay. Patients were followed up for 5 years, and the endpoint events were recorded. Patients were grouped according to CAC score and serum MG53 level. Logistic regression was used to analyze the correlation between serum MG53 level and CAC level. Kaplan-Meier curve and COX proportional risk model were used to analyze the effect of serum MG53 level on the prognosis of CAC patients. The R software (4.2.2 version) was used to calculate the best cut-off value of serum MG53 level for predicting end-point events. Results Compared with the low-risk group,the serum MG53 level in the high-risk group was significantly lower [57.717 (28.548,139.965) pg/mL vs 33.553 (13.509,56.952) pg/mL, P<0.001]. Serum MG53 level was independently associated with the severity of CAC (OR=0.984, 95%CI:0.971-0.994, P<0.007). The risk of cardiovascular events was significantly increased in patients with low MG53 levels (OR=0.282, 95%CI:0.160-0.498, P<0.001). The cutoff value of MG53 was calculated as 18.36 pg/mL. Conclusions Serum MG53 level may be related to the degree of CAC and the prognosis of patients,suggesting that serum MG53 level may be a biomarker for predicting CAC and the prognosis of patients.

参考文献

[1] Hashmi S, Shah PW, Aherrahrou Z, et al. Beyond the basics: unraveling the complexity of coronary artery calcification[J]. Cells, 2023, 12(24):2822.
[2] Mohan J, Bhatti K, Tawney A, et al. Coronary artery calcification[M/OL]. 2023. https://www.ncbi.nlm.nih.gov/books/NBK519037/.
[3] Ji B, Liu XB. Coronary artery calcification: concepts and clinical applications[J]. Ann Med Surg (Lond), 2024, 86(5):2848-2855.
[4] Song R, Peng W, Zhang Y, et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders[J]. Nature, 2013, 494(7437):375-379.
[5] Jiang W, Liu M, Gu C, et al. The pivotal role of mitsugumin 53 in cardiovascular diseases[J]. Cardiovasc Toxicol, 2021, 21(1):2-11.
[6] Feng H, Shen H, Robeson MJ, et al. MG53 E3 ligase-dead mutant protects diabetic hearts from acute ischemic/reperfusion injury and ameliorates diet-induced cardiometabolic damage[J]. Diabetes, 2022, 71(2):298-314.
[7] Cao CM, Zhang Y, Weisleder N, et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning[J]. Circulation, 2010, 121(23):2565-2574.
[8] Pagliaro P, Penna C. Cardiac postconditioning[J]. Antioxid Redox Signal, 2011, 14(5):777-779.
[9] Han X, Chen D, Liufu N, et al. MG53 protects against sepsis-induced myocardial dysfunction by upregulating peroxisome proliferator-activated receptor-α[J]. Oxid Med Cell Longev, 2020, 2020:7413693.
[10] Xie H, Wang Y, Zhu T, et al. Serum MG53/TRIM72 is associated with the presence and severity of coronary artery disease and acute myocardial infarction[J]. Front Physiol, 2020, 11:617845.
[11] Xie H, Yan Z, Feng S, et al. Prognostic value of circulating MG53 levels in acute myocardial infarction[J]. Front Cardiovasc Med, 2020, 7:596107.
[12] van der Aalst CM, Denissen SJAM, Vonder M, et al. Screening for cardiovascular disease risk using traditional risk factor assessment or coronary artery calcium scoring: the ROBINSCA trial[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(11):1216-1224.
[13] Zhao Y, Qian Y, Sun Z, et al. Role of PI3K in the progression and regression of atherosclerosis[J]. Front Pharmacol, 2021, 12:632378.
[14] Hao N, Zhou Z, Zhang F, et al. Interleukin-29 accelerates vascular calcification via JAK2/STAT3/BMP2 signaling[J]. J Am Heart Assoc, 2023, 12(1):e027222.
[15] Huang H, Feng H, Zhuge D. M1 macrophage activated by notch signal pathway contributed to ventilator-induced lung injury in chronic obstructive pulmonary disease model[J]. J Surg Res, 2019, 244:358-367.
[16] Liu C, Li B, Tang K, et al. Aquaporin 1 alleviates acute kidney injury via PI3K-mediated macrophage M2 polarization[J]. Inflamm Res, 2020, 69(5):509-521.
[17] Kang JH, Kawano T, Murata M, et al. Vascular calcification and cellular signaling pathways as potential therapeutic targets[J]. Life Sci, 2024, 336:122309.
[18] Chen X, Su J, Feng J, et al. TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notch-1 signaling[J]. J Cell Physiol, 2019, 234(10):17749-17756.
[19] Wang Y, Zhou H, Wu J, et al. MG53 alleviates hypoxia/reoxygenation-induced cardiomyocyte injury by succinylation and ubiquitination modification[J]. Clin Exp Hypertens, 2023, 45(1):2271196.
[20] Li Z, Dai R, Chen M, et al. p55γ degrades RIP3 via MG53 to suppress ischaemia-induced myocardial necroptosis and mediates cardioprotection of preconditioning[J]. Cardiovasc Res, 2023, 119(14):2421-2440.
文章导航

/