综述

间充质干细胞在系统性风湿病中的应用:现状与前景

  • 苏传昕 ,
  • 朱振航 ,
  • 王旺 ,
  • 梁容珍 ,
  • 郑颂国 ,
  • 赵福涛
展开
  • 1.上海交通大学医学院松江医院风湿免疫科 细胞和基因研究院 松江研究院,上海 201600
    2.上海交通大学医学院附属第九人民医院免疫风湿科,上海 200011
郑颂国 E-mail:Song.Zheng@shsmu.edu.cn;
赵福涛 E-mail:ftzhao@moisten.org

收稿日期: 2024-11-22

  网络出版日期: 2025-03-11

基金资助

松江区科技攻关项目(2024SJKJGG070);上海市卫生健康委员会科研项目(202140411)

Application of mesenchymal stem cells in systemic rheumatic diseases: current situation and prospects

  • SU Chuanxin ,
  • ZHU Zhenhang ,
  • WANG Wang ,
  • LIANG Rongzhen ,
  • ZHENG Songguo ,
  • ZHAO Futao
Expand
  • 1. Department of Rheumatology and Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
    2. Department of Rheumatology and Immunology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Received date: 2024-11-22

  Online published: 2025-03-11

摘要

间充质干细胞(mesenchymal stem cell,MSC)作为一种具有多向分化能力和免疫调节特性的细胞类型,近年来在系统性风湿病的治疗中受到广泛关注。系统性风湿病包括系统性红斑狼疮(systemic lupus erythematosus,SLE)、类风湿性关节炎(rheumatoid arthritis,RA)、强直性脊柱炎(ankylosing spondylitis,AS)和干燥综合征(Sjögren syndrome,SS)等,这些疾病常导致患者生活质量显著下降,且现有治疗手段存在局限性。因此,探索MSC在这些疾病中的应用具有重要意义。现有研究表明,MSC可通过调节免疫反应、促进组织修复及减轻炎症等多种机制发挥治疗作用。然而,尽管部分临床研究已表明MSC在系统性风湿病中的潜在疗效,仍存在细胞来源选择、治疗方案优化及长期安全性评估等问题亟待解决。本文旨在系统回顾MSC在系统性风湿病中的应用现状,分析其疗效及安全性,并展望未来研究方向,以期为该领域发展提供参考。

本文引用格式

苏传昕 , 朱振航 , 王旺 , 梁容珍 , 郑颂国 , 赵福涛 . 间充质干细胞在系统性风湿病中的应用:现状与前景[J]. 内科理论与实践, 2024 , 19(06) : 422 -426 . DOI: 10.16138/j.1673-6087.2024.06.13

Abstract

Mesenchymal stem cell (MSC), a type of cell with the ability to differentiate into multiple lineages and immunomodulatory properties, have gained widespread attention in the treatment of systemic rheumatic diseases recently. Systemic rheumatic diseases such as systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, and Sjögren syndrome often led to a significant decline in patients’ quality of life, while current treatment methods have limitations. Therefore, it’s important to explore new method, and the application of MSC in these diseases has great significance. Current research indicates that MSC can exert therapeutic effects through various mechanisms, including regulating immune responses, promoting tissue repair, and reducing inflammation, and some clinical studies have showed the potential efficacy of MSC in systemic rheumatic diseases. However, many issues still need to be addressed, such as the source of cells, optimization of treatment protocols, and long-term safety assessments. This article systematically reviews the current application status of MSC in systemic rheumatic diseases, analyze their efficacy, safety, and future research directions, to provide a reference for development in this field.

参考文献

[1] Bizzaro N, Mazzoni A, Carbone T, et al. Issues in autoantibody tests used in the classification criteria for autoimmune rheumatic diseases: the laboratory autoimmunologist’s perspective[J]. Autoimmun Rev, 2024, 23(9):103604.
[2] Joerns EK, Adams TN, Sparks JA, et al. Interstitial pneumonia with autoimmune features: what the rheumatologist needs to know[J]. Curr Rheumatol Repm, 2022, 24(6):213-226.
[3] Wu W, Xiao Z, Chen Y, et al. CD39 Produced from human GMSCs regulates the balance of osteoclasts and osteoblasts through the Wnt/β-Catenin pathway in osteoporosis[J]. Mol Ther, 2020, 28(6):1518-1532.
[4] Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell Transplant, 2011, 20(1):5-14.
[5] Dang J, Xu Z, Xu A, et al. Human gingiva-derived mesenchymal stem cells are therapeutic in lupus nephritis through targeting of CD39-CD73 signaling pathway[J]. J Autoimmun, 2020, 113:102491.
[6] Shen R, Lu Y, Cai C, et al. Research progress and prospects of benefit-risk assessment methods for umbilical cord mesenchymal stem cell transplantation in the clinical treatment of spinal cord injury[J]. Stem Cell Res Ther, 2024, 15(1):196.
[7] Tan Kwan Zen N, Zeming KK, et al. Scalable mesenchymal stem cell enrichment from bone marrow aspirate using deterministic lateral displacement (DLD) microfluidic sorting[J]. Lab Chip, 2023, 23(19):4313-4323.
[8] Sun H, Shi C, Ye Z, et al. The role of mesenchymal stem cells in liver injury[J]. Cell Biol Int, 2022, 46(4):501-511.
[9] Zhang X, Huang F, Li W, et al. Human gingiva-derived mesenchymal stem cells modulate monocytes/macrophages and alleviate atherosclerosis[J]. Front Immunol, 2018, 9:878.
[10] Wu C, Chen L, Huang YZ, et al. Comparison of the proliferation and differentiation potential of human urine-, placenta decidua basalis-, and bone,arrow-derived stem cells[J]. Stem Cells Int, 2018, 2018:7131532.
[11] Deng Y, Huang G, Chen F, et al. Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells[J]. J Cell Physiol, 2019, 234(10):17254-17268.
[12] Wang Y, Qi Z, Yan Z, et al. Mesenchymal stem cell immunomodulation: a novel intervention mechanism in cardiovascular disease[J]. Front Cell Dev Biol, 2022, 9:742088.
[13] Chen J, Zheng CX, Jin Y, et al. Mesenchymal stromal cell-mediated immune regulation: a promising remedy in the therapy of type 2 diabetes mellitus[J]. Stem Cells, 2021, 39(7):838-852.
[14] 曹雪琛, 鲁严. 应重视间充质干细胞在免疫性皮肤病治疗中的应用[J]. 中华医学杂志, 2021, 101(16):1123-1127.
[15] Huang F, Chen M, Chen W, et al. Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via cd39-cd73-adenosine and ido signals[J]. Front Immunol, 2017, 8:68.
[16] Fang Q, Wu W, Xiao Z, et al. Gingival-derived mesenchymal stem cells alleviate allergic asthma inflammation via HGF in animal models[J]. iScience, 2024, 27(5):109818.
[17] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nat Rev Immunol, 2008, 8(9):726-736.
[18] Chihaby N, Orliaguet M, Le Pottier L, et al. Treatment of sj?gren’s syndrome with mesenchymal stem cells: a systematic review[J]. Int J Mol Sci, 2021, 22(19):10474.
[19] Gen? D, Bulut O, Günaydin B, et al. Dental follicle mesenchymal stem cells ameliorated glandular dysfunction in Sj?gren’s syndrome murine model[J]. PLoS One, 2022, 17(5):e0266137.
[20] Lu L, Lan Q, Li Z, et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions[J]. Proc Natl Acad Sci USA, 2014, 111(33):E3432-40.
[21] Du Y, Fang Q, Zheng SG. Regulatory T cells: concept, classification, phenotype, and biological characteristics[J]. Adv Exp Med Biol, 2021, 1278:1-31.
[22] Yao G, Qi J, Liang J, Shi B, et al. Mesenchymal stem cell transplantation alleviates experimental Sj?gren’s syndrome through IFN-β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26):8253-8265.
[23] Chen J, Shi X, Deng Y, et al. miRNA-148a-containing GMSC-derived EVs modulate Treg/Th17 balance via IKKB/NF-κB pathway and treat a rheumatoid arthritis model[J]. JCI Insight, 2024, 9(10):e177841.
[24] Chen J, Huang F, Hou Y, et al. TGF-β-induced CD4+ FoxP3+ regulatory T cell-derived extracellular vesicles modulate Notch1 signaling through miR-449a and prevent collagen-induced arthritis in a murine model[J]. Cell Mol Immunol, 2021, 18(11):2516-2529.
[25] Li N, Gao Z, Zhao L, et al. MSC-derived small extracellular vesicles attenuate autoimmune dacryoadenitis by promoting m2 macrophage polarization and inducing Tregs via miR-100-5p[J]. Front Immunol, 2022, 13:888949.
[26] I T, Kanai R, Hasegawa K, et al. Recent progress in regenerative therapy for damaged salivary glands: from bench to bedside[J]. Oral Dis, 2024, 30(1):38-49.
[27] Shi Y, Jiang N, Li M, et al. Mesenchymal stem cells and connective tissue diseases: From bench to bedside[J]. J Transl Int Med, 2022, 11(1):30-45.
[28] Shi X, Liao T, Chen Y, et al. Dihydroartemisinin inhibits follicular helper T and B cells: implications for systemic lupus erythematosus treatment[J]. Arch Pharm Res, 2024, 47(7):632-644.
[29] Xu L, Dai Q, Zhang Y, et al. Prospects for the application of transplantation with human amniotic membrane epithelial stem cells in systemic lupus erythematosus[J]. Cell Transplant, 2024, 33:9636897241236586.
[30] Sun W, Yan S, Yang C, et al. Mesenchymal stem cells-derived exosomes ameliorate lupus by inducing m2 macrophage polarization and regulatory T Cell expansion in MRL/lpr Mice[J]. Immunol Invest, 2022, 51(6):1785-1803.
[31] Liu Y, Ma Y, Du B, et al. Mesenchymal stem cells attenuated blood-brain barrier disruption via downregulation of aquaporin-4 expression in EAE mice[J]. Mol Neurobiol, 2020, 57(9):3891-3901.
[32] Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, et al. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis[J]. Rev Neurosci, 2019, 30(8):857-868.
[33] Ben-Zwi M, Petrou P, Halimi M, et al. Neuralized mesenchymal stem cells (NMSC) exhibit phenotypical, and biological evidence of neuronal transdifferentiation and suppress EAE more effectively than unmodified MSC[J]. Immunol Lett, 2019, 212:6-13.
[34] Fan L, Zhang Y, Huang S, et al. Effects of multiple treatments with stem cell therapy in patients with multiple sclerosis[J]. Mult Scler Relat Disord, 2024, 92:105944.
[35] Baldassari LE, Planchon SM, Bermel RA, et al. Serum neurofilament light chain concentration in a phase 1/2 trial of autologous mesenchymal stem cell transplantation[J]. Mult Scler J Exp Transl Clin, 2019, 5(4):2055217319887198.
[36] Kandeel M, Morsy MA, Alkhodair KM, et al. Mesenchymal stem cell-derived extracellular vesicles: an emerging diagnostic and therapeutic biomolecules for neurodegenerative disabilities[J]. Biomolecules, 2023, 13(8):1250.
[37] Andrzejewska A, Dabrowska S, Lukomska B, et al. Mesenchymal stem cells for neurological disorders[J]. Adv Sci (Weinh), 2021, 8(7):2002944.
[38] Chen Y, Chen M, Liu Y, et al. BAFF promotes follicular helper T cell development and germinal center formation through BR3 signal[J]. JCI Insight, 2024, 9(21):e183400.
[39] Biglari N, Mehdizadeh A, Vafaei Mastanabad M, et al. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: history, findings, and prospective challenges[J]. Pathol Res Pract, 2023, 247:154541.
[40] Cyr-Depauw C, Cook DP, Mi?ik I, et al. Single-cell RNA sequencing reveals repair features of human umbilical cord mesenchymal stromal cells[J]. Am J Respir Crit Care Med, 2024, 210(6):814-827.
[41] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature, 2002, 418(6893):41-49.
[42] Wang X, He W, Huang H, et al. Recent advances in hydrogel technology in delivering mesenchymal stem cell for osteoarthritis therapy[J]. Biomolecules, 2024, 14(7):858.
[43] Lee BW, Kwok SK. Mesenchymal stem/stromal cell-based therapies in systemic rheumatic disease: from challenges to new approaches for overcoming restrictions[J]. Int J Mol Sci, 2023, 24(12):10161.
[44] Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: the need for translation into clinical therapy[J]. Prog Mol Biol Transl Sci, 2023, 199:199-225.
[45] Li H, Tian Y, Xie L, et al. Mesenchymal stem cells in allergic diseases: current status[J]. Allergol Int, 2020, 69(1):35-45.
[46] Mohamad T, Jyotsna F, Farooq U, et al. Individualizing medicinal therapy post heart stent implantation: tailoring for patient factors[J]. Cureus, 2023, 15(8):e43977.
[47] Nguyen-Truong M, Hematti P, Wang Z. Current status of myocardial restoration via the paracrine function of mesenchymal stromal cells[J]. Am J Physiol Heart Circ Physiol, 2021, 321(1):H112-H127.
文章导航

/