实体瘤细胞毒治疗后罹患髓系肿瘤的研究进展
An overview of myeloid neoplasms post cytotoxic therapy of solid tumors
Received date: 2024-03-08
Online published: 2025-03-11
苏琪莹 , 王虹晓 , 阎骅 . 实体瘤细胞毒治疗后罹患髓系肿瘤的研究进展[J]. 内科理论与实践, 2024 , 19(06) : 427 -430 . DOI: 10.16138/j.1673-6087.2024.06.14
With the prolonged survival of patients with solid tumors, the incidence of myeloid neoplasms in the patients is gradually increasing after cytotoxic therapy such as chemotherapy and/or radiotherapy. The treatment efficacy and prognosis in the patients are worse than those in patients with primary myeloid neoplasms. Studies have shown that cytotoxic therapy of solid tumors may increase the risk of myeloid neoplasms, and its pathogenesis involves gene mutations, chromosomal abnormalities, and clonal hematopoiesis of indeterminate potential (CHIP). In response to the issue, researchers have proposed individualized treatment strategies, which is selecting appropriate treatment methods based on the molecular biological characteristics of tumors and the overall condition of patients. This article summarizes the incidence, prognosis, pathogenesis, and current treatment methods of myeloid neoplasms post cytotoxic therapy for solid tumors, providing important insights for guiding clinical practice and improving patient prognosis.
[1] | Khanna L, Prasad SR, Yedururi S, et al. Second malignancies after radiation therapy: update on pathogenesis and cross-sectional imaging findings[J]. RadioGraphics, 2021, 41(3):876-894. |
[2] | Priante AV, Castilho EC, Kowalski LP. Second primary tumors in patients with head and neck cancer[J]. Curr Oncol Rep, 2011, 13(2):132-137. |
[3] | Tanjak P, Suktitipat B, Vorasan N, et al. Risks and cancer associations of metachronous and synchronous multiple primary cancers: a 25-year retrospective study[J]. BMC Cancer, 2021, 21(1):1045. |
[4] | 何敏, 蔡依玲, 王坚. 多原发恶性肿瘤的研究进展[J]. 癌症进展, 2023, 21(10):1054-1056. |
[5] | Miranda-Filho A, Pi?eros M, Ferlay J, et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study[J]. Lancet Haematol, 2018, 5(1):e14-e24. |
[6] | 黄晓军. 骨髓增生异常综合征伴原始细胞增多(MDS-EB)诊疗指南(2022年版)[J]. 全科医学临床与教育, 2022, 20(6):483-485. |
[7] | 金洁, 周一乐. WHO 2022第5版急性髓系白血病分类解读[J]. 临床血液学杂志, 2023, 36(3):145-147. |
[8] | Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405. |
[9] | Caruso G, Gigli F, Parma G, et al. Myeloid neoplasms post PARP inhibitors for ovarian cancer[J]. Int J Gynecol Cancer, 2023, 33(4):598-606. |
[10] | Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7):1703-1719. |
[11] | 胡彬, 孙士芳. 肺癌合并多原发癌的研究进展[J]. 生命的化学, 2022, 42(9):1738-1745. |
[12] | 周珣. 175例多原发癌的临床回顾性研究[D/OL]. 新疆: 新疆医科大学, 2023. |
[13] | 张旭昌, 范磊, 陆化, 等. 血液肿瘤患者中多种恶性肿瘤发生风险及生存分析:2009年至2017年单中心回顾性研究[J]. 中国实验血液学杂志, 2023, 31(2):389-395. |
[14] | McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide[J]. Nat Rev Cancer, 2017, 17(9):513-527. |
[15] | 刘畅, 陈昊, 王春霖, 等. 51例实体瘤迭合造血系统肿瘤患者的临床特点[J]. 中国医科大学学报, 2023, 52(12):1140-1143. |
[16] | 焦扬, 姜艳红, 刘冰, 等. 血液肿瘤和实体瘤治疗相关急性髓系白血病的临床特点分析[J]. 中华肿瘤杂志, 2024, 46(1):86-95. |
[17] | Morton LM, Dores GM, Schonfeld SJ, et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era[J]. JAMA Oncol, 2019, 5(3):318-325. |
[18] | Oh J, Kim YR, Kim Y, et al. Hereditary cancer syndrome-associated pathogenic variants are common in patients with hematologic malignancies subsequent to primary solid cancer[J]. J Cancer, 2021, 12(14):4288-4294. |
[19] | Nilsson C, Linde F, Huleg?rdh E, et al. Characterization of therapy-related acute myeloid leukemia: increasing incidence and prognostic implications[J]. Haematologica, 2023, 108(4):1015-1025. |
[20] | Swan D, Gurney M, Krawczyk J, et al. Beyond DNA damage: exploring the immunomodulatory effects of cyclophosphamide in multiple myeloma[J]. Hemasphere, 2020, 4(2):e350. |
[21] | Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy[J]. Annu Rev Med, 2015, 66:129-143. |
[22] | Bolton KL, Ptashkin RN, Gao T, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis[J]. Nat Genet, 2020, 52(11):1219-1226. |
[23] | Adamska M, Kowal-Wi?niewska E, Przyby?owicz-Chalecka A, et al. Clinical outcomes of therapy-related acute myeloid leukemia: an over 20-year single-center retrospective analysis[J]. Pol Arch Intern Med, 2023, 133(1):16344. |
[24] | Calvete O, Mestre J, Jerez A, et al. The secondary myelodysplastic neoplasms (MDS) jigsaw[J]. Cancers (Basel), 2023, 15(5):1483. |
[25] | Voso MT, Falconi G, Fabiani E. What’s new in the pathogenesis and treatment of therapy-related myeloid neoplasms[J]. Blood, 2021, 138(9):749-757. |
[26] | Burocziova M, Danek P, Oravetzova A, et al. Ppm1d truncating mutations promote the development of genotoxic stress-induced AML[J]. Leukemia, 2023, 37(11):2209-2220. |
[27] | Sperling AS, Guerra VA, Kennedy JA, et al. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms[J]. Blood, 2022, 140(16):1753-1763. |
[28] | Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes[J]. Nat Med, 2020, 26(10):1549-1556. |
[29] | Cabezas M, García-quevedo L, Alonso C, et al. Polymorphisms in MDM2 and TP53 genes and risk of developing therapy-related myeloid neoplasms[J]. Scientific Reports, 2019, 9(1):150. |
[30] | Weinberg OK, Siddon A, Madanat YF, et al. TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML[J]. Blood Adv, 2022, 6(9):2847-2853. |
[31] | Kuendgen A, Nomdedeu M, Tuechler H, et al. Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification-an approach to classification of patients with t-MDS[J]. Leukemia, 2021, 35(3):835-849. |
[32] | Rogers HJ, Wang X, Xie Y, et al. Comparison of therapy-related and de novo core binding factor acute myeloid leukemia: A bone marrow pathology group study[J]. Am J Hematol, 2020, 95(7):799-808. |
[33] | Warren JT, Link DC. Clonal hematopoiesis and risk for hematologic malignancy[J]. Blood, 2020, 136(14):1599-1605. |
[34] | Gillis NK, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study[J]. Lancet Oncol, 2017, 18(1):112-121. |
[35] | Kida M, Usuki K, Uchida N, et al. Outcome and risk factors for therapy-related myeloid neoplasms treated with allogeneic stem cell transplantation in Japan[J]. Biol Blood Marrow Transplant, 2020, 26(8):1543-1551. |
[36] | Cantu MD. Updates in molecular genetics of therapy-related myeloid neoplasms[J]. Semin Diagn Pathol, 2023, 40(3):182-186. |
[37] | Liu J, Tong J, Yang H. Targeting CD33 for acute myeloid leukemia therapy[J]. BMC Cancer, 2022, 22(1):24. |
[38] | Fathi AT, Erba HP, Lancet JE, et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML[J]. Blood, 2018, 132(11):1125-1133. |
[39] | 金洁, 周一乐. 成人急性髓细胞白血病的诊断与治疗进展[J]. 临床血液学杂志, 2022, 35(5):309-311. |
[40] | DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia[J]. N Engl J Med, 2020, 383(7):617-629. |
[41] | Sallman DA. To target the untargetable: elucidation of synergy of APR-246 and azacitidine in TP53 mutant myelodysplastic syndromes and acute myeloid leukemia[J]. Haematologica, 2020, 105(6):1470-1472. |
/
〈 |
|
〉 |