论著

PML::RARα融合蛋白对白介素6受体的转录调控研究

  • 赵玲玲 ,
  • 崔灿琦 ,
  • 糜坚青
展开
  • 1.上海交通大学医学院附属瑞金医院血液科 上海血液学研究所,上海 200025
    2.杜克大学医学院分子生理学研究所,美国北卡罗来纳州 达勒姆 27703
    3.上海市血液病基因编辑与细胞免疫治疗重点实验室,上海 200025
糜坚青 E-mail:jianqingmi@shsmu.edu.cn

收稿日期: 2025-03-25

  网络出版日期: 2025-07-08

基金资助

国家重点研发计划(2023YFC2508900);上海交通大学医学院“上海市高水平地方高校”协同创新团队项目

Transcriptional regulation of interleukin-6 receptor by PML::RARα fusion protein

  • ZHAO Lingling ,
  • CUI Canqi ,
  • MI Jianqing
Expand
  • 1. Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Hematology, Shanghai 200025, China
    2. Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27703, USA
    3. Shanghai Key Laboratory of Gene Editing and Cell-based Immunotherapy for Hematological Diseases, Shanghai 200025, China

Received date: 2025-03-25

  Online published: 2025-07-08

摘要

目的:探讨PML::RARα融合蛋白对白介素6受体(interleukin-6 receptor ,IL-6R)的调控机制,及IL-6R对急性早幼粒细胞白血病(acute promyelocytic leukemia,APL)细胞增殖和分化的影响。方法:采用GSE12662和GSE10358数据集分析APL细胞中IL-6R的表达水平;采用逆转录实时定量PCR(reverse transcription quantitative real-time PCR,RT-qPCR)检测全反式维A酸(all-trans retinoic acid,ATRA)处理前后的NB4细胞及Zn²⁺诱导前后PR9细胞中IL-6R的mRNA表达;通过染色质免疫共沉淀(chromatin immunoprecipitation,ChIP)-seq数据分析、ChIP-qPCR实验及双荧光素酶报告基因活性检测,研究PML::RARα对IL-6R的调控机制;构建IL-6R过表达质粒并通过逆转录病毒转染至NB4细胞,利用细胞计数试剂盒-8(cell counting kit-8,CCK-8)实验检测细胞增殖,流式细胞术检测NB4细胞的分化情况。结果:GSE12662数据集分析结果显示,APL患者早幼粒细胞中IL-6R的表达水平(12.20±0.41)显著低于正常早幼粒细胞(13.14±0.47,t=4.289,P<0.001)和中性粒细胞(14.82±0.40,t=12.35,P<0.001);GSE10358数据集分析结果显示,APL患者白血病细胞中IL-6R表达水平(5.93±0.84)显著低于非APL急性髓系白血病(acute myeloid leukemia,AML)患者(6.50±0.87,t=3.91,P<0.001)。APL患者细胞中IL-6R表达受PML::RARα融合蛋白的抑制,在APL中呈低表达模式,其机制为PML::RARα直接结合在IL-6R启动子区域,从而抑制其转录。在APL细胞株NB4中过表达IL-6R后,细胞增殖显著被抑制,转染4 d后,CCK-8检测到的吸光度值分别为0.86 ± 0.01和0.40 ± 0.01(t=32.66,P<0.001);同时细胞分化显著增强,CD11b阳性细胞比例由(3.10±1.22)%升高至(14.4±1.11)%(t=11.84,P<0.001)。结论:IL-6R是PML::RARα的靶基因,PML::RARα通过直接结合IL-6R启动子抑制其转录;明确IL-6R通过抑制APL细胞增殖并诱导其部分分化发挥其生物学功能。

本文引用格式

赵玲玲 , 崔灿琦 , 糜坚青 . PML::RARα融合蛋白对白介素6受体的转录调控研究[J]. 内科理论与实践, 2025 , 20(02) : 146 -151 . DOI: 10.16138/j.1673-6087.2025.02.08

Abstract

Objective To investigate the regulatory mechanism of PML::RARα fusion protein on interleukin-6 receptor (IL-6R) and the effects of IL-6R on the proliferation and differentiation of acute promyelocytic leukemia (APL) cells.Methods The expression levels of IL-6R in APL cells were analyzed using the GSE12662 and GSE10358 datasets. Reverse transcription quantitative real-time quantitative PCR(RT-qPCR) was performed to detect IL-6R mRNA expression in NB4 cells before and after all-trans retinoic acid (ATRA) treatment, as well as in PR9 cells before and after Zn²⁺ induction. Chromatin immunoprecipitation (ChIP)-seq data analysis, ChIP-qPCR experiments, and luciferase reporter gene activity assays were performed to explore the regulatory mechanism of PML::RARα on IL-6R. An IL-6R expression plasmid was constructed for NB4 cells via retrovirus. Cell proliferation was assessed using the cell counting kit-8 (CCK-8) assay, and CD11b expression was detected by flow cytometry.Results Analysis of the GSE12662 dataset revealed that the expression level of IL-6R in APL cells (12.20 ± 0.41) was significantly lower than that in normal promyelocytes (13.14 ± 0.47, t = 4.289, P < 0.001) and polymorphonuclear cells (14.82 ± 0.40, t = 12.35, P < 0.001). Moreover, analysis of the GSE10358 dataset showed that IL-6R expression in APL patients (5.93 ± 0.84) was significantly lower than that in non-APL AML patients (6.50 ± 0.87, t = 3.91, P < 0.001). PML::RARα directly bound to the promoter region of IL-6R to inhibit its transcriptional activity resulting in the low expression. Overexpression of IL-6R in the APL-derived NB4 cells significantly inhibited cell proliferation. Four days after transfection, the optical density values measured by the CCK-8 assay were 0.86 ± 0.01 and 0.40 ± 0.01, respectively (t = 32.66, P < 0.001). Simultaneously, cell differentiation was significantly enhanced. The ratio of the CD11b positive cells increased from 3.10 % ± 1.22 % to 14.4 % ± 1.11 % (t = 11.84, P < 0.001).Conclusions IL-6R is a target gene of PML::RARα, demonstrating that PML::RARα can suppress IL-6R transcription by binding to its promoter region. It is illustrated that IL-6R inhibited the cell proliferation and induced partial differentiation in APL cells.

参考文献

[1] Chen Z, Chen SJ. Poisoning the devil[J]. Cell, 2017, 168(4): 556-560.
[2] 《中国急性早幼粒细胞白血病诊疗指南(2018年版)》发布[J]. 中华医学信息导报, 2018, 33(7): 9.
[3] de thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure[J]. Cancer Cell, 2017, 32(5): 552-560.
[4] Tan Y, Wang X, Song H, et al. A PML/RARalpha direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia[J]. Blood, 2021, 137(11):1503-1516.
[5] Villiers W, Kelly A, He X, et al. Multi-omics and machine learning reveal context-specific gene regulatory activities of PML::RARA in acute promyelocytic leukemia[J]. Nat Commun, 2023, 14(1): 724.
[6] Rose-John S. Interleukin-6 signalling in health and disease[EB/J]. F1000Res, 2020. https://pmc.ncbi.nlm.nih.gov/articles/PMC7443778/.
[7] Garbers C, Heink S, Korn T, et al. Interleukin-6: designing specific therapeutics for a complex cytokine[J]. Nat Rev Drug Discov, 2018, 17(6): 395-412.
[8] Mei Y, Ren K, Liu Y, et al. Bone marrow-confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia[J]. J Clin Invest, 2022, 132(17): e152673.
[9] 张丽霞, 杜思博, 李琳, 等. 白介素-6及其受体与多种健康结局:孟德尔随机化的证据图[J]. 兰州大学学报(医学版), 2024, 50(10): 62-72.
[10] Wang MJ, Zhang HL, Chen F, et al. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases[J]. Exp Hematol Oncol, 2024, 13(1): 62.
[11] Stahl M, Tallman MS. Differentiation syndrome in acute promyelocytic leukaemia[J]. Br J Haematol, 2019, 187(2): 157-162.
[12] Hui H, Yang H, Dai Q, et al. Oroxylin A inhibits ATRA-induced IL-6 expression involved in retinoic acid syndrome by down-regulating CHOP[J]. Gene, 2014, 551(2):230-235.
[13] 赵世香, 葛圆圆, 李增政, 等. 细胞因子对初诊急性早幼粒细胞白血病患者早期死亡的影响[J]. 中国实验血液学杂志, 2023, 31(5): 1315-1321.
[14] 陈芳, 马凤霞, 李洋, 等. 人脐带间充质干细胞分泌白介素-6对白血病细胞分化的影响[J]. 中国医学科学院学报, 2016, 38(2): 164-168.
[15] Wang X, Tan Y, Li Y, et al. Repression of CDKN2C caused by PML/RARalpha binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front Med, 2016, 10(4): 420-429.
[16] Payton JE, Grieselhuber NR, Chang LW, et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples[J]. J Clin Invest, 2009, 119(6): 1714-1726.
[17] Tomasson MH, Xiang Z, Walgren R, et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia[J]. Blood, 2008, 111(9): 4797-808.
[18] Qian M, Jin W, Zhu X, et al. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia[J]. J Hematol Oncol, 2013, 6:25.
[19] de thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure[J]. Nat Rev Cancer, 2010, 10(11):775-783.
[20] Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines[J]. Science, 1992, 258(5082):593-597.
[21] Inoue K, Sugiyama H, Ogawa H, et al. Expression of the interleukin-6 (IL-6), IL-6 receptor, and gp130 genes in acute leukemia[J]. Blood, 1994, 84(8): 2672-2680.
[22] 刘爽, 奚永志, 郭斯启, 等. IL-6受体α亚单位mRNA和蛋白在人白血病细胞中的表达[J]. 中国实验血液学杂志, 2002, 10(1): 22-26.
[23] Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5):878-888.
[24] Reeh H, Rudolph N, Billing U, et al. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor alpha to gp130 expression: fusing experimental insights and dynamic modelling[J]. Cell Commun Signal, 2019, 17(1): 46.
[25] Schreiber S, Aden K, Bernardes JP, et al. Therapeutic interleukin-6 trans-signaling inhibition by olamkicept (sgp130fc) in patients with active inflammatory bowel disease[J]. Gastroenterology, 2021, 160(7): 2354-2366.
[26] Zhang S, Chen B, Wang B, et al. Effect of induction therapy with olamkicept vs placebo on clinical response in patients with active ulcerative colitis[J]. JAMA, 2023, 329(9): 725-734.
[27] Kantarjian HM, DiNardo CD, Kadia TM, et al. Acute myeloid leukemia management and research in 2025[J]. CA Cancer J Clin, 2025, 75(1): 46-67.
文章导航

/