PML::RARα融合蛋白对白介素6受体的转录调控研究
收稿日期: 2025-03-25
网络出版日期: 2025-07-08
基金资助
国家重点研发计划(2023YFC2508900);上海交通大学医学院“上海市高水平地方高校”协同创新团队项目
Transcriptional regulation of interleukin-6 receptor by PML::RARα fusion protein
Received date: 2025-03-25
Online published: 2025-07-08
目的:探讨PML::RARα融合蛋白对白介素6受体(interleukin-6 receptor ,IL-6R)的调控机制,及IL-6R对急性早幼粒细胞白血病(acute promyelocytic leukemia,APL)细胞增殖和分化的影响。方法:采用GSE12662和GSE10358数据集分析APL细胞中IL-6R的表达水平;采用逆转录实时定量PCR(reverse transcription quantitative real-time PCR,RT-qPCR)检测全反式维A酸(all-trans retinoic acid,ATRA)处理前后的NB4细胞及Zn²⁺诱导前后PR9细胞中IL-6R的mRNA表达;通过染色质免疫共沉淀(chromatin immunoprecipitation,ChIP)-seq数据分析、ChIP-qPCR实验及双荧光素酶报告基因活性检测,研究PML::RARα对IL-6R的调控机制;构建IL-6R过表达质粒并通过逆转录病毒转染至NB4细胞,利用细胞计数试剂盒-8(cell counting kit-8,CCK-8)实验检测细胞增殖,流式细胞术检测NB4细胞的分化情况。结果:GSE12662数据集分析结果显示,APL患者早幼粒细胞中IL-6R的表达水平(12.20±0.41)显著低于正常早幼粒细胞(13.14±0.47,t=4.289,P<0.001)和中性粒细胞(14.82±0.40,t=12.35,P<0.001);GSE10358数据集分析结果显示,APL患者白血病细胞中IL-6R表达水平(5.93±0.84)显著低于非APL急性髓系白血病(acute myeloid leukemia,AML)患者(6.50±0.87,t=3.91,P<0.001)。APL患者细胞中IL-6R表达受PML::RARα融合蛋白的抑制,在APL中呈低表达模式,其机制为PML::RARα直接结合在IL-6R启动子区域,从而抑制其转录。在APL细胞株NB4中过表达IL-6R后,细胞增殖显著被抑制,转染4 d后,CCK-8检测到的吸光度值分别为0.86 ± 0.01和0.40 ± 0.01(t=32.66,P<0.001);同时细胞分化显著增强,CD11b阳性细胞比例由(3.10±1.22)%升高至(14.4±1.11)%(t=11.84,P<0.001)。结论:IL-6R是PML::RARα的靶基因,PML::RARα通过直接结合IL-6R启动子抑制其转录;明确IL-6R通过抑制APL细胞增殖并诱导其部分分化发挥其生物学功能。
关键词: 白介素6受体; 急性早幼粒细胞白血病; PML::RARα; 细胞增殖; 细胞分化
赵玲玲 , 崔灿琦 , 糜坚青 . PML::RARα融合蛋白对白介素6受体的转录调控研究[J]. 内科理论与实践, 2025 , 20(02) : 146 -151 . DOI: 10.16138/j.1673-6087.2025.02.08
Objective To investigate the regulatory mechanism of PML::RARα fusion protein on interleukin-6 receptor (IL-6R) and the effects of IL-6R on the proliferation and differentiation of acute promyelocytic leukemia (APL) cells.Methods The expression levels of IL-6R in APL cells were analyzed using the GSE12662 and GSE10358 datasets. Reverse transcription quantitative real-time quantitative PCR(RT-qPCR) was performed to detect IL-6R mRNA expression in NB4 cells before and after all-trans retinoic acid (ATRA) treatment, as well as in PR9 cells before and after Zn²⁺ induction. Chromatin immunoprecipitation (ChIP)-seq data analysis, ChIP-qPCR experiments, and luciferase reporter gene activity assays were performed to explore the regulatory mechanism of PML::RARα on IL-6R. An IL-6R expression plasmid was constructed for NB4 cells via retrovirus. Cell proliferation was assessed using the cell counting kit-8 (CCK-8) assay, and CD11b expression was detected by flow cytometry.Results Analysis of the GSE12662 dataset revealed that the expression level of IL-6R in APL cells (12.20 ± 0.41) was significantly lower than that in normal promyelocytes (13.14 ± 0.47, t = 4.289, P < 0.001) and polymorphonuclear cells (14.82 ± 0.40, t = 12.35, P < 0.001). Moreover, analysis of the GSE10358 dataset showed that IL-6R expression in APL patients (5.93 ± 0.84) was significantly lower than that in non-APL AML patients (6.50 ± 0.87, t = 3.91, P < 0.001). PML::RARα directly bound to the promoter region of IL-6R to inhibit its transcriptional activity resulting in the low expression. Overexpression of IL-6R in the APL-derived NB4 cells significantly inhibited cell proliferation. Four days after transfection, the optical density values measured by the CCK-8 assay were 0.86 ± 0.01 and 0.40 ± 0.01, respectively (t = 32.66, P < 0.001). Simultaneously, cell differentiation was significantly enhanced. The ratio of the CD11b positive cells increased from 3.10 % ± 1.22 % to 14.4 % ± 1.11 % (t = 11.84, P < 0.001).Conclusions IL-6R is a target gene of PML::RARα, demonstrating that PML::RARα can suppress IL-6R transcription by binding to its promoter region. It is illustrated that IL-6R inhibited the cell proliferation and induced partial differentiation in APL cells.
[1] | Chen Z, Chen SJ. Poisoning the devil[J]. Cell, 2017, 168(4): 556-560. |
[2] | 《中国急性早幼粒细胞白血病诊疗指南(2018年版)》发布[J]. 中华医学信息导报, 2018, 33(7): 9. |
[3] | de thé H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure[J]. Cancer Cell, 2017, 32(5): 552-560. |
[4] | Tan Y, Wang X, Song H, et al. A PML/RARalpha direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia[J]. Blood, 2021, 137(11):1503-1516. |
[5] | Villiers W, Kelly A, He X, et al. Multi-omics and machine learning reveal context-specific gene regulatory activities of PML::RARA in acute promyelocytic leukemia[J]. Nat Commun, 2023, 14(1): 724. |
[6] | Rose-John S. Interleukin-6 signalling in health and disease[EB/J]. F1000Res, 2020. https://pmc.ncbi.nlm.nih.gov/articles/PMC7443778/. |
[7] | Garbers C, Heink S, Korn T, et al. Interleukin-6: designing specific therapeutics for a complex cytokine[J]. Nat Rev Drug Discov, 2018, 17(6): 395-412. |
[8] | Mei Y, Ren K, Liu Y, et al. Bone marrow-confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia[J]. J Clin Invest, 2022, 132(17): e152673. |
[9] | 张丽霞, 杜思博, 李琳, 等. 白介素-6及其受体与多种健康结局:孟德尔随机化的证据图[J]. 兰州大学学报(医学版), 2024, 50(10): 62-72. |
[10] | Wang MJ, Zhang HL, Chen F, et al. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases[J]. Exp Hematol Oncol, 2024, 13(1): 62. |
[11] | Stahl M, Tallman MS. Differentiation syndrome in acute promyelocytic leukaemia[J]. Br J Haematol, 2019, 187(2): 157-162. |
[12] | Hui H, Yang H, Dai Q, et al. Oroxylin A inhibits ATRA-induced IL-6 expression involved in retinoic acid syndrome by down-regulating CHOP[J]. Gene, 2014, 551(2):230-235. |
[13] | 赵世香, 葛圆圆, 李增政, 等. 细胞因子对初诊急性早幼粒细胞白血病患者早期死亡的影响[J]. 中国实验血液学杂志, 2023, 31(5): 1315-1321. |
[14] | 陈芳, 马凤霞, 李洋, 等. 人脐带间充质干细胞分泌白介素-6对白血病细胞分化的影响[J]. 中国医学科学院学报, 2016, 38(2): 164-168. |
[15] | Wang X, Tan Y, Li Y, et al. Repression of CDKN2C caused by PML/RARalpha binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front Med, 2016, 10(4): 420-429. |
[16] | Payton JE, Grieselhuber NR, Chang LW, et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples[J]. J Clin Invest, 2009, 119(6): 1714-1726. |
[17] | Tomasson MH, Xiang Z, Walgren R, et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia[J]. Blood, 2008, 111(9): 4797-808. |
[18] | Qian M, Jin W, Zhu X, et al. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia[J]. J Hematol Oncol, 2013, 6:25. |
[19] | de thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure[J]. Nat Rev Cancer, 2010, 10(11):775-783. |
[20] | Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines[J]. Science, 1992, 258(5082):593-597. |
[21] | Inoue K, Sugiyama H, Ogawa H, et al. Expression of the interleukin-6 (IL-6), IL-6 receptor, and gp130 genes in acute leukemia[J]. Blood, 1994, 84(8): 2672-2680. |
[22] | 刘爽, 奚永志, 郭斯启, 等. IL-6受体α亚单位mRNA和蛋白在人白血病细胞中的表达[J]. 中国实验血液学杂志, 2002, 10(1): 22-26. |
[23] | Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5):878-888. |
[24] | Reeh H, Rudolph N, Billing U, et al. Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor alpha to gp130 expression: fusing experimental insights and dynamic modelling[J]. Cell Commun Signal, 2019, 17(1): 46. |
[25] | Schreiber S, Aden K, Bernardes JP, et al. Therapeutic interleukin-6 trans-signaling inhibition by olamkicept (sgp130fc) in patients with active inflammatory bowel disease[J]. Gastroenterology, 2021, 160(7): 2354-2366. |
[26] | Zhang S, Chen B, Wang B, et al. Effect of induction therapy with olamkicept vs placebo on clinical response in patients with active ulcerative colitis[J]. JAMA, 2023, 329(9): 725-734. |
[27] | Kantarjian HM, DiNardo CD, Kadia TM, et al. Acute myeloid leukemia management and research in 2025[J]. CA Cancer J Clin, 2025, 75(1): 46-67. |
/
〈 |
|
〉 |