[1] |
Basanta M, Jarvis RM, Xu Y, et al. Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers[J]. Analyst, 2010, 135(2): 315-320.
doi: 10.1039/b916374c
pmid: 20098764
|
[2] |
Cheng Z, Feng K, Su Y, et al. Novel biosorbents synthesized from fungal and bacterial biomass and their applications in the adsorption of volatile organic compounds[J]. Bioresour Technol, 2020, 300: 122705.
doi: 10.1016/j.biortech.2019.122705
URL
|
[3] |
Franchina FA, Purcaro G, Burklund A, et al. Evaluation of different adsorbent materials for the untargeted and targeted bacterial VOC analysis using GC×GC-MS[J]. Anal Chim Acta, 2019, 1066: 146-153.
doi: S0003-2670(19)30316-2
pmid: 31027530
|
[4] |
Tabibpour M, Yamini Y, Ahmadi SH, et al. Carbon fibers modified with polypyrrole for headspace solid phase microextraction of trace amounts of 2-pentyl furan from breath samples[J]. J Chromatogr A, 2020, 1609: 460497.
doi: 10.1016/j.chroma.2019.460497
URL
|
[5] |
Biagini D, Lomonaco T, Ghimenti S, et al. Using labelled internal standards to improve needle trap micro-extraction technique prior to gas chromatography/mass spectrometry[J]. Talanta, 2019, 200: 145-155.
doi: S0039-9140(19)30298-X
pmid: 31036166
|
[6] |
Chen CY, Lin WC, Yang HY. Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research[J]. Respir Res, 2020, 21(1): 45.
doi: 10.1186/s12931-020-1285-6
URL
|
[7] |
Freddi S, Emelianov AV, Bobrinetskiy II, et al. Development of a sensing array for human breath analysis based on SWCNT layers functionalized with semiconductor organic molecules[J]. Adv Healthc Mater, 2020, 9(12): e2000377.
|
[8] |
Gouma PI, Wang L, Simon SR, et al. Novel isoprene sensor for a flu virus breath monitor[J]. Sensors (Basel), 2017, 17(1): 199.
doi: 10.3390/s17010199
URL
|
[9] |
Shen F, Wang J, Xu Z, et al. Rapid flu diagnosis using silicon nanowire sensor[J]. Nano Lett, 2012, 12(7): 3722-3730.
doi: 10.1021/nl301516z
URL
|
[10] |
Takenaka K, Togashi S, Miyake R, et al. Airborne virus detection by a sensing system using a disposable integrated impaction device[J]. J Breath Res, 2016, 10(3): 036009.
doi: 10.1088/1752-7155/10/3/036009
URL
|
[11] |
Ramírez-Guízar S, Sykes H, Perry JD, et al. A chromatographic approach to distinguish Gram-positive from Gram-negative bacteria using exogenous volatile organic compound metabolites[J]. J Chromatogr A, 2017, 1501: 79-88.
doi: S0021-9673(17)30568-X
pmid: 28438317
|
[12] |
Purcaro G, Nasir M, Franchina FA, et al. Breath metabolome of mice infected with Pseudomonas aeruginosa[J]. Metabolomics, 2019, 15(1): 10.
doi: 10.1007/s11306-018-1461-6
URL
|
[13] |
Neerincx AH, Geurts BP, Habets MF, et al. Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations[J]. J Breath Res, 2016, 10(1): 016002.
doi: 10.1088/1752-7155/10/1/016002
URL
|
[14] |
Bandyopadhaya A, Constantinou C, Psychogios N, et al. Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle[J]. Int J Mol Med, 2016, 37(4): 867-878.
doi: 10.3892/ijmm.2016.2487
pmid: 26935176
|
[15] |
Karami N, Rezadoost H, Mirzajani F, et al. Resistant/susceptible classification of respiratory tract pathogenic bacteria based on volatile organic compounds profiling[J]. Cell Mol Biol (Noisy-le-grand), 2018, 64(9): 6-15.
|
[16] |
Purcaro G, Rees CA, Melvin JA, et al. Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model[J]. J Breath Res, 2018, 12(4): 046001.
doi: 10.1088/1752-7163/aac2f1
URL
|
[17] |
Koehler T, Ackermann I, Brecht D, et al. Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry[J]. Anal Bioanal Chem, 2020, 412(12): 2881-2892.
doi: 10.1007/s00216-020-02529-4
pmid: 32198528
|
[18] |
Shestivska V, Nemec A, Dȓevínek P, et al. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry[J]. Rapid Commun Mass Spectrom, 2011, 25(17): 2459-2467.
doi: 10.1002/rcm.5146
URL
|
[19] |
Montes Vidal D, von Rymon-Lipinski AL, Ravella S, et al. Long-chain Alkyl cyanides: unprecedented volatile compounds released by Pseudomonas and Micromonospora bacteria[J]. Angew Chem Int Ed Engl, 2017, 56(15): 4342-4346.
doi: 10.1002/anie.201611940
URL
|
[20] |
Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis[J]. Tuberculosis (Edinb), 2008, 88 (4): 317-323.
doi: 10.1016/j.tube.2008.01.002
URL
|
[21] |
Kolk AH, van Berkel JJ, Claassens MM, et al. Breath analysis as a potential diagnostic tool for tuberculosis[J]. Int J Tuberc Lung Dis, 2012, 16(6): 777-782.
doi: 10.5588/ijtld.11.0576
pmid: 22507235
|
[22] |
Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmonary tuberculosis[J]. Tuberculosis (Edinb), 2010, 90(2): 145-151.
doi: 10.1016/j.tube.2010.01.003
URL
|
[23] |
Neerincx AH, Geurts BP, van Loon J, et al. Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles[J]. J Breath Res, 2016, 10(4): 046014.
doi: 10.1088/1752-7155/10/4/046014
URL
|
[24] |
Acharige MJT, Koshy S, Ismail N, et al. Breath-based diagnosis of fungal infections[J]. J Breath Res, 2018, 12(2): 027108.
doi: 10.1088/1752-7163/aa98a1
URL
|
[25] |
Bhimji A, Bhaskaran A, Singer LG, et al. Aspergillus galactomannan detection in exhaled breath condensate compared to bronchoalveolar lavage fluid for the diagnosis of invasive aspergillosis in immunocompromised patients[J]. Clin Microbiol Infect, 2018, 24(6): 640-645.
doi: 10.1016/j.cmi.2017.09.018
URL
|
[26] |
de Heer K, Kok MG, Fens N, et al. Detection of airway colonization by aspergillus fumigatus by use of electronic nose technology in patients with cystic fibrosis[J]. J Clin Microbiol, 2016, 54 (3): 569-575.
doi: 10.1128/JCM.02214-15
pmid: 26677251
|
[27] |
de Heer K, Vonk SI, Kok M, et al. eNose technology can detect and classify human pathogenic molds in vitro: a proof-of-concept study of Aspergillus fumigatus and Rhizopus oryzae[J]. J Breath Res, 2016, 10(3): 036008.
doi: 10.1088/1752-7155/10/3/036008
URL
|
[28] |
Traxler S, Bischoff AC, Saβ R, et al. VOC breath profile in spontaneously breathing awake swine during influenza A infection[J]. Sci Rep, 2018, 8 (1): 14857.
doi: 10.1038/s41598-018-33061-2
pmid: 30291257
|
[29] |
Traxler S, Barkowsky G, Saβ R, et al. Volatile scents of influenza A and S. pyogenes (co-)infected cells[J]. Sci Rep, 2019, 9 (1): 18894.
doi: 10.1038/s41598-019-55334-0
pmid: 31827195
|
[30] |
Khoubnasabjafari M, Jouyban-Gharamaleki V, Ghanbari R, et al. Exhaled breath condensate as a potential specimen for diagnosing COVID-19[J]. 2020, 12(17): 1195-1197.
|