Journal of Internal Medicine Concepts & Practice >
Progress in clinical application of leadless pacemaker
TANG Baopeng, ZHANG Jianghua, GUO Yankai . Progress in clinical application of leadless pacemaker[J]. Journal of Internal Medicine Concepts & Practice, 2022 , 17(05) : 365 -368 . DOI: 10.16138/j.1673-6087.2022.05.003
[1] | Kirkfeldt RE, Johansen JB, Nohr EA, et al. Complications after cardiac implantable electronic device implantations[J]. Eur Heart J, 2014, 35(18): 1186-1194. |
[2] | Spickler JW, Rasor NS, Kezdi P, et al. Totally self-contained intracardiac pacemaker[J]. J Electrocardiol, 1970, 3(3-4): 325-331. |
[3] | Goto H, Sugiura T, Harada Y, et al. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source[J]. Med Biol Eng Comput, 1999, 37(3): 377-380. |
[4] | Koruth JS, Rippy MK, Khairkhahan A, et al. Feasibility and efficacy of percutaneously delivered leadless cardiac pacing in an in vivo ovine model[J]. J Cardiovasc Electrophysiol, 2015, 26(3): 322-328. |
[5] | Chen K, Zheng X, Dai Y, et al. Multiple leadless pacemakers implanted in the right ventricle of swine[J]. Europace, 2016, 18(11): 1748-1752. |
[6] | Ansari MH, Karami MA. A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers[J]. J Intell Mater Syst Struct, 2018, 29(3): 438-445. |
[7] | Haeberlin A, Rosch Y, Tholl MV, et al. Intracardiac turbines suitable for catheter-based implantation[J]. IEEE Trans Biomed Eng, 2020, 67(4): 1159-1166. |
[8] | Hwang GT, Byun M, Jeong CK, et al. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications[J]. Adv Healthc Mater, 2015, 4(5): 646-658. |
[9] | Dagdeviren C, Yang BD, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm[J]. Proc Natl Acad Sci U S A, 2014, 111(5): 1927-1932. |
[10] | Ansari MH, Karami MA. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers[J]. Smart Mater Struct, 2017, 26(6): 065001. |
[11] | Zurbuchen A, Haeberlin A, Bereuter L, et al. Endocardial energy harvesting by electromagnetic induction[J]. IEEE Trans Biomed Eng, 2018, 65(2): 424-430. |
[12] | Franzina N, Zurbuchen A, Zumbrunnen A, et al. A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers[J]. PLoS One, 2020, 15(9): e0239667. |
[13] | Lau CP. The range of sensors and algorithms used in rate adaptive cardiac pacing[J]. Pacing Clin Electrophysiol, 1992, 15(8): 1177-1211. |
[14] | Mond HG. Rate adaptive pacing[J]. Heart Lung Circ, 2021, 30(2): 225-232. |
[15] | Lau CP, Stott JR, Toff WD, et al. Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing[J]. Pacing Clin Electrophysiol, 1988, 11(9): 1299-1309. |
[16] | Lloyd M, Reynolds D, Sheldon T, et al. Rate adaptive pacing in an intracardiac pacemaker[J]. J Cardiovasc Electrophysiol, 2018, 29(12): 1690-1696. |
[17] | Garweg C, Splett V, Sheldon TJ, et al. Behavior of leadless AV synchronous pacing during atrial arrhythmias and stability of the atrial signals over time-results of the MARVEL Evolve subanalysis[J]. Pacing Clin Electrophysiol, 2019, 42(3): 381-387. |
[18] | Steinwender C, Khelae SK, Garweg C, et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker[J]. JACC Clin Electrophysiol, 2020, 6(1): 94-106. |
[19] | Chinitz L, Ritter P, Khelae SK, et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker[J]. Heart Rhythm, 2018, 15(9): 1363-1371. |
[20] | Fananapazir L, Bennett DH, Monks P. Atrial synchronized ventricular pacing[J]. Pacing Clin Electrophysiol, 1983, 6(3 Pt 1): 601-608. |
[21] | Ausubel K, Steingart RM, Shimshi M, et al. Maintenance of exercise stroke volume during ventricular versus atrial synchronous pacing: role of contractility[J]. Circulation, 72(5): 1037-1043. |
[22] | Reynolds D, Duray GZ, Omar R, et al. A leadless intracardiac transcatheter pacing system[J]. N Engl J Med, 2016, 374(6): 533-541. |
[23] | El-Chami MF, Bockstedt L, Longacre C, et al. Leadless vs. transvenous single-chamber ventricular pacing in the Micra CED study[J]. Eur Heart J, 2022, 43(12): 1207-1215. |
[24] | Chen K, Zhang S, Wu L, et al. A prospective, multicenter, single-arm study of performance of the micra transcatheter pacemaker in chinese patients[J]. Int J Heart Rhythm, 2021, 6(1): 47. |
[25] | Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy[J]. Eur Heart J, 2021, 42(35): 3427-3520. |
[26] | Funasako M, Neuzil P, Dujka L, et al. Successful implementation of a totally leadless biventricular pacing approach[J]. Heart Rhythm Case Rep, 2020, 6(3): 153-157. |
[27] | Carabelli A, Jabeur M, Jacon P, et al. European experience with a first totally leadless cardiac resynchronization therapy pacemaker system[J]. Europace, 2021, 23(5): 740-747. |
[28] | Gold MR, Lambiase PD, El-Chami MF, et al. Primary results from the understanding outcomes with the S-ICD in primary prevention patients with low ejection fraction (UNTOUCHED) trial[J]. Circulation, 2021, 143(1): 7-17. |
[29] | Ahmed FZ, Cunnington C, Motwani M, et al. Totally leadless dual-device implantation for combined spontaneous ventricular tachycardia defibrillation and pacemaker function[J]. Can J Cardiol, 2017, 33(8): 1066. |
[30] | Ljungström E, Brandt J, Mörtsell D, et al. Combination of a leadless pacemaker and subcutaneous defibrillator with nine effective shock treatments during follow-up of 18 months[J]. J Electrocardiol, 2019, 56: 1-3. |
[31] | 凌天佑, 潘文麒, 吴立群. 房室同步无导线起搏器植入一例[J]. 中华心律失常学杂志, 2021, 25(1): 65-66. |
/
〈 |
|
〉 |