Expert forum

Progress in clinical application of leadless pacemaker

Expand

Received date: 2022-06-30

  Online published: 2022-11-04

Cite this article

TANG Baopeng, ZHANG Jianghua, GUO Yankai . Progress in clinical application of leadless pacemaker[J]. Journal of Internal Medicine Concepts & Practice, 2022 , 17(05) : 365 -368 . DOI: 10.16138/j.1673-6087.2022.05.003

References

[1] Kirkfeldt RE, Johansen JB, Nohr EA, et al. Complications after cardiac implantable electronic device implantations[J]. Eur Heart J, 2014, 35(18): 1186-1194.
[2] Spickler JW, Rasor NS, Kezdi P, et al. Totally self-contained intracardiac pacemaker[J]. J Electrocardiol, 1970, 3(3-4): 325-331.
[3] Goto H, Sugiura T, Harada Y, et al. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source[J]. Med Biol Eng Comput, 1999, 37(3): 377-380.
[4] Koruth JS, Rippy MK, Khairkhahan A, et al. Feasibility and efficacy of percutaneously delivered leadless cardiac pacing in an in vivo ovine model[J]. J Cardiovasc Electrophysiol, 2015, 26(3): 322-328.
[5] Chen K, Zheng X, Dai Y, et al. Multiple leadless pacemakers implanted in the right ventricle of swine[J]. Europace, 2016, 18(11): 1748-1752.
[6] Ansari MH, Karami MA. A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers[J]. J Intell Mater Syst Struct, 2018, 29(3): 438-445.
[7] Haeberlin A, Rosch Y, Tholl MV, et al. Intracardiac turbines suitable for catheter-based implantation[J]. IEEE Trans Biomed Eng, 2020, 67(4): 1159-1166.
[8] Hwang GT, Byun M, Jeong CK, et al. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications[J]. Adv Healthc Mater, 2015, 4(5): 646-658.
[9] Dagdeviren C, Yang BD, Su Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm[J]. Proc Natl Acad Sci U S A, 2014, 111(5): 1927-1932.
[10] Ansari MH, Karami MA. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers[J]. Smart Mater Struct, 2017, 26(6): 065001.
[11] Zurbuchen A, Haeberlin A, Bereuter L, et al. Endocardial energy harvesting by electromagnetic induction[J]. IEEE Trans Biomed Eng, 2018, 65(2): 424-430.
[12] Franzina N, Zurbuchen A, Zumbrunnen A, et al. A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers[J]. PLoS One, 2020, 15(9): e0239667.
[13] Lau CP. The range of sensors and algorithms used in rate adaptive cardiac pacing[J]. Pacing Clin Electrophysiol, 1992, 15(8): 1177-1211.
[14] Mond HG. Rate adaptive pacing[J]. Heart Lung Circ, 2021, 30(2): 225-232.
[15] Lau CP, Stott JR, Toff WD, et al. Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing[J]. Pacing Clin Electrophysiol, 1988, 11(9): 1299-1309.
[16] Lloyd M, Reynolds D, Sheldon T, et al. Rate adaptive pacing in an intracardiac pacemaker[J]. J Cardiovasc Electrophysiol, 2018, 29(12): 1690-1696.
[17] Garweg C, Splett V, Sheldon TJ, et al. Behavior of leadless AV synchronous pacing during atrial arrhythmias and stability of the atrial signals over time-results of the MARVEL Evolve subanalysis[J]. Pacing Clin Electrophysiol, 2019, 42(3): 381-387.
[18] Steinwender C, Khelae SK, Garweg C, et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker[J]. JACC Clin Electrophysiol, 2020, 6(1): 94-106.
[19] Chinitz L, Ritter P, Khelae SK, et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker[J]. Heart Rhythm, 2018, 15(9): 1363-1371.
[20] Fananapazir L, Bennett DH, Monks P. Atrial synchronized ventricular pacing[J]. Pacing Clin Electrophysiol, 1983, 6(3 Pt 1): 601-608.
[21] Ausubel K, Steingart RM, Shimshi M, et al. Maintenance of exercise stroke volume during ventricular versus atrial synchronous pacing: role of contractility[J]. Circulation, 72(5): 1037-1043.
[22] Reynolds D, Duray GZ, Omar R, et al. A leadless intracardiac transcatheter pacing system[J]. N Engl J Med, 2016, 374(6): 533-541.
[23] El-Chami MF, Bockstedt L, Longacre C, et al. Leadless vs. transvenous single-chamber ventricular pacing in the Micra CED study[J]. Eur Heart J, 2022, 43(12): 1207-1215.
[24] Chen K, Zhang S, Wu L, et al. A prospective, multicenter, single-arm study of performance of the micra transcatheter pacemaker in chinese patients[J]. Int J Heart Rhythm, 2021, 6(1): 47.
[25] Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy[J]. Eur Heart J, 2021, 42(35): 3427-3520.
[26] Funasako M, Neuzil P, Dujka L, et al. Successful implementation of a totally leadless biventricular pacing approach[J]. Heart Rhythm Case Rep, 2020, 6(3): 153-157.
[27] Carabelli A, Jabeur M, Jacon P, et al. European experience with a first totally leadless cardiac resynchronization therapy pacemaker system[J]. Europace, 2021, 23(5): 740-747.
[28] Gold MR, Lambiase PD, El-Chami MF, et al. Primary results from the understanding outcomes with the S-ICD in primary prevention patients with low ejection fraction (UNTOUCHED) trial[J]. Circulation, 2021, 143(1): 7-17.
[29] Ahmed FZ, Cunnington C, Motwani M, et al. Totally leadless dual-device implantation for combined spontaneous ventricular tachycardia defibrillation and pacemaker function[J]. Can J Cardiol, 2017, 33(8): 1066.
[30] Ljungström E, Brandt J, Mörtsell D, et al. Combination of a leadless pacemaker and subcutaneous defibrillator with nine effective shock treatments during follow-up of 18 months[J]. J Electrocardiol, 2019, 56: 1-3.
[31] 凌天佑, 潘文麒, 吴立群. 房室同步无导线起搏器植入一例[J]. 中华心律失常学杂志, 2021, 25(1): 65-66.
Outlines

/