Journal of Internal Medicine Concepts & Practice >
An update on complement targeted treatment of IgA nephropathy
ZHANG Huijian, LI Guisen . An update on complement targeted treatment of IgA nephropathy[J]. Journal of Internal Medicine Concepts & Practice, 2023 , 18(03) : 197 -200 . DOI: 10.16138/j.1673-6087.2023.03.013
[1] | Robert T, Jantzen R, Cambier A, et al. Spatiotemporal trends and prognosis of end-stage renal disease patients with biopsy-proven immunoglobulin A nephropathy in France from 2010 to 2014[J]. Clin Kidney J, 2021, 14(3):898-908. |
[2] | Schena FP, Nistor I. Epidemiology of IgA nephropathy:a global perspective[J]. Semin Nephrol, 2018, 38(5):435-442. |
[3] | Mohd R, Mohammad Kazmin NE, Abdul Cader R, et al. Long term outcome of immunoglobulin A (IgA) nephropathy: a single center experience[J]. PLoS One, 2021, 16(4): e0249592. |
[4] | Medjeral-Thomas NR, Cook HT, Pickering MC. Complement activation in IgA nephropathy[J]. Semin Immuno-pathol, 2021, 43(5): 679-690. |
[5] | Poppelaars F, Faria B, Schwaeble W, et al. The contribution of complement to the pathogenesis of IgA nephropathy: are complement-targeted therapies moving from rare disorders to more common diseases?[J]. J Clin Med, 2021, 10(20):4715. |
[6] | Wu L, Liu D, Xia M, et al. Immunofluorescence deposits in the mesangial area and glomerular capillary loops did not affect the prognosis of immunoglobulin a nephropathy except C1q:a single-center retrospective study[J]. BMC Nephrol, 2021, 22(1): 43. |
[7] | Tan L, Tang Y, Pei G, et al. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy[J]. Sci Rep, 2021, 11(1): 5467. |
[8] | Wang Z, Jiang Y, Chen P, et al. The level of urinary C4d is associated with disease progression in IgA nephropathy with glomerular crescentic lesions: a cohort study[J]. Nephrol Dial Transplant, 2022, 37(11): 2119-2127. |
[9] | Worawichawong S, Plumworasawat S, Liwlompaisan W, et al. Distribution pattern of mesangial C4d deposits as predictor of kidney failure in IgA nephropathy[J]. PLoS One, 2021, 16(6): e0252638. |
[10] | Eder M, Kozakowski N, Omic H, et al. Glomerular C4d in post-transplant IgA nephropathy is associated with decreased allograft survival[J]. J Nephrol, 2021, 34(3): 839-849. |
[11] | Yeo SC, Liu X, Liew A. Complement factor H gene polymorphism rs6677604 and the risk, severity and progression of IgA nephropathy: a systematic review and meta-analysis[J]. Nephrology (Carlton), 2018, 23(12): 1096-1106. |
[12] | Gyapon-Quast F, Goicoechea de Jorge E, Malik T, et al. Defining the glycosaminoglycan interactions of complement factor H-related protein 5[J]. J Immunol, 2021, 207(2): 534-541. |
[13] | Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy[J]. Kidney Int, 2017, 92(4): 942-952. |
[14] | Jullien P, Laurent B, Claisse G, et al. Deletion variants of CFHR1 and CFHR3 associate with mesangial immune deposits but not with progression of IgA nephropathy[J]. J Am Soc Nephrol, 2018, 29(2): 661-669. |
[15] | Paunas TIF, Finne K, Leh S, et al. Glomerular abundance of complement proteins characterized by proteomic analysis of laser-captured microdissected glomeruli associates with progressive disease in IgA nephropathy[J]. Clin Proteomics, 2017, 14: 30. |
[16] | Zhu L, Guo WY, Shi SF, et al. Circulating complement factor H-related protein 5 levels contribute to development and progression of IgA nephropathy[J]. Kidney Int, 2018, 94(1): 150-158. |
[17] | Floege J, Rauen T, Tang SCW. Current treatment of IgA nephropathy[J]. Semin Immunopathol, 2021, 43(5): 717-728. |
[18] | Hu X, Feng J, Deng S, et al. Anaphylatoxins enhance Th9 cell recruitment via the CCL20-CCR6 axis in IgA nephropathy[J]. J Nephrol, 2020, 33(5): 1027-1036. |
[19] | Hu X, Feng J, Zhou Q, et al. Respiratory syncytial virus exacerbates kidney damages in IgA nephropathy mice via the C5a-C5aR1 axis orchestrating Th17 cell responses[J]. Front Cell Infect Microbiol, 2019, 9: 151. |
[20] | Lee A. Avacopan: first approval[J]. Drugs, 2022, 82(1): 79-85. |
[21] | Bruchfeld A, Magin H, Nachman P, et al. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy—an open-label pilot study[J]. Clin Kidney J, 2022, 15(5): 922-928. |
[22] | Nakamura H, Anayama M, Makino M, et al. Atypical hemolytic uremic syndrome associated with complement factor H mutation and IgA nephropathy[J]. Nephron, 2018, 138(4): 324-327. |
[23] | Guzzo G, Sadallah S, Fodstad H, et al. Case report: a rare truncating variant of the CFHR5 gene in IgA nephropathy[J]. Front Genet, 2021, 12: 529236. |
[24] | Herzog AL, Wanner C, Amann K, et al. First treatment of relapsing rapidly progressive IgA nephropathy with eculizumab after living kidney donation[J]. Transplant Proc, 2017, 49(7): 1574-1577. |
[25] | McKeage K. Ravulizumab: first global approval[J]. Drugs, 2019, 79(3): 347-352. |
[26] | Barratt J, Carroll K, Lafayette R. Pos-107 long-term phase 2 efficacy of the masp-2 inhibitor narsoplimab for treatment of severe IgA nephropathy[J]. Kidney Int Rep, 2022, 7(2): S45. |
[27] | Lafayette RA, Rovin BH, Reich HN, et al. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy[J]. Kidney Int Rep, 2020, 5(11): 2032-2041. |
[28] | Barratt J, Rovin B, Zhang H, et al. Pos-546 efficacy and safety of iptacopan in iga nephropathy: results of a randomized double-blind placebo-controlled phase 2 study at 6 months[J]. Kidney Int Rep, 2022. 7(2): S236. |
[29] | Perkovic V, Rovin B, Zhang H, et al. A multi-center, randomized, double-blind, placebo controlled, parallel group, phase Ⅲ study to evaluate the efficacy and safety of LNP023 in primary IgA nephropathy patients[J]. Nephrol Dial Transplant, 2021, 36 Suppl 1:mo148. |
/
〈 |
|
〉 |