Journal of Internal Medicine Concepts & Practice >
Research progress on molecular mechanism of primary aldosteronism
JIANG Yiran, WANG Weiqing . Research progress on molecular mechanism of primary aldosteronism[J]. Journal of Internal Medicine Concepts & Practice, 2023 , 18(04) : 261 -265 . DOI: 10.16138/j.1673-6087.2023.04.010
[1] | Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension[J]. Science, 2011, 331(6018): 768-772. |
[2] | Fernandes-Rosa FL, Williams TA, Riester A, et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma[J]. Hypertension, 2014, 64(2): 354-361. |
[3] | Lenzini L, Rossitto G, Maiolino G, et al. A meta-analysis of somatic KCNJ5 K+ channel mutations in 1636 patients with an aldosterone-producing adenoma[J]. J Clin Endocrinol Metab, 2015, 100(8): E1089-E1095. |
[4] | Taguchi R, Yamada M, Nakajima Y, et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas[J]. J Clin Endocr-inol Metab, 2012, 97(4): 1311-1319. |
[5] | Zheng FF, Zhu LM, Nie AF, et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma[J]. Hypertension, 2015, 65(3): 622-628. |
[6] | Cao Y, Zhou W, Li L, et al. Pan-cancer analysis of somatic mutations across 21 neuroendocrine tumor types[J]. Cell Res, 2018, 28(5): 601-604. |
[7] | De Sousa K, Boulkroun S, Baron S, et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma[J]. Hypertension, 2020, 75(4): 1034-1044. |
[8] | Zhang C, Wu L, Jiang L, et al. KCNJ5 mutation contributes to complete clinical success in aldosterone-producing adenoma[J]. Endocr Pract, 2021, 27(7): 736-742. |
[9] | Geller DS, Zhang J, Wisgerhof MV, et al. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism[J]. J Clin Endocrinol Metab, 2008, 93(8): 3117-3123. |
[10] | Mulatero P, Monticone S, Rainey WE, et al. Role of KCNJ5 in familial and sporadic primary aldosteronism[J]. Nat Rev Endocrinol, 2013, 9(2): 104-112. |
[11] | Scholl UI, Abriola L, Zhang C, et al. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma[J]. J Clin Invest, 2017, 127(7): 2739-2750. |
[12] | Maiolino G, Ceolotto G, Battistel M, et al. Macrolides for KCNJ5-mutated aldosterone-producing adenoma (MAPA): design of a study for personalized diagnosis of primary aldosteronism[J]. Blood Press, 2018, 27(4): 200-205. |
[13] | Azizan EA, Poulsen H, Tuluc P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension[J]. Nat Genet, 2013, 45(9): 1055-1060. |
[14] | Scholl UI, Goh G, St?lting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism[J]. Nat Genet, 2013, 45(9): 1050-1054. |
[15] | Nanba K, Omata K, Else T, et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans[J]. J Clin Endocrinol Metab, 2018, 103(10): 3869-3876. |
[16] | Nanba K, Omata K, Gomez-Sanchez CE, et al. Genetic characteristics of aldosterone-producing adenomas in Blacks[J]. Hypertension, 2019, 73(4): 885-892. |
[17] | Pinggera A, Mackenroth L, Rump A, et al. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy[J]. Hum Mol Genet, 2017, 26(15): 2923-2932. |
[18] | Scholl UI, St?lting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism[J]. Elife, 2015, 4: e06315. |
[19] | Daniil G, Fernandes-Rosa FL, Chemin J, et al. CACNA1H mutations are associated with different forms of primary aldosteronism[J]. EBioMedicine, 2016, 13: 225-236. |
[20] | Nanba K, Blinder AR, Rege J, et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma[J]. Hypertension, 2020, 75(3): 645-649. |
[21] | Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension[J]. Nat Genet, 2013, 45(4): 440-444. |
[22] | Tauber P, Aichinger B, Christ C, et al. Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca2+-ATPase ATP2B3[J]. ndocrinology, 2016, 157(6): 2489-2499. |
[23] | Stowasser M, Gordon RD. Familial hyperaldosteronism[J]. J Steroid Biochem Mol Biol, 2001, 78(3): 215-229. |
[24] | Scholl UI, St?lting G, Schewe J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type Ⅱ[J]. Nat Genet, 2018, 50(3): 349-354. |
[25] | Fernandes-Rosa FL, Daniil G, Orozco IJ, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism[J]. Nat Genet, 2018, 50(3): 355-361. |
[26] | ?kerstr?m T, Maharjan R, Sven Willenberg H, et al. Activating mutations in CTNNB1 in aldosterone producing adenomas[J]. Sci Rep, 2016, 6: 19546. |
[27] | Berthon A, Drelon C, Val P. Pregnancy, primary aldo-steronism, and somatic CTNNB1 mutations[J]. N Engl J Med, 2016, 374(15): 1493-1494. |
[28] | Rhayem Y, Perez-Rivas LG, Dietz A, et al. PRKACA somatic mutations are rare findings in aldosterone-producing adenomas[J]. J Clin Endocrinol Metab, 2016, 101(8): 3010-3017. |
[29] | Zilbermint M, Xekouki P, Faucz FR, et al. Primary aldosteronism and ARMC5 variants[J]. J Clin Endocrinol Metab, 2015, 100(6): E900-E999. |
[30] | Mulatero P, Schiavi F, Williams TA, et al. ARMC5 mutation analysis in patients with primary aldosteronism and bilateral adrenal lesions[J]. J Hum Hypertens, 2016, 30(6): 374-378. |
[31] | Nishimoto K, Nakagawa K, Li D, et al. Adrenocortical zonation in humans under normal and pathological conditions[J]. J Clin Endocrinol Metab, 2010, 95(5): 2296-2305. |
[32] | Nishimoto K, Tomlins SA, Kuick R, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands[J]. Proc Natl Acad Sci U S A, 2015, 112(33): E4591-E4599. |
[33] | Nishimoto K, Koga M, Seki T, et al. Immunohistoche-mistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism[J]. Mol Cell Endocrinol, 2017, 441: 124-133. |
[34] | Fernandes-Rosa FL, Giscos-Douriez I, Amar L, et al. Different somatic mutations in multinodular adrenals with aldosterone-producing adenoma[J]. Hypertension, 2015, 66(5): 1014-1022. |
[35] | Davies LA, Hu C, Guagliardo NA, et al. TASK channel deletion in mice causes primary hyperaldosteronism[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 2203-2208. |
[36] | Guagliardo NA, Yao J, Hu C, et al. TASK-3 channel deletion in mice recapitulates low-renin essential hypertension[J]. Hypertension, 2012, 59(5): 999-1005. |
[37] | Penton D, Bandulik S, Schweda F, et al. Task3 potassium channel gene invalidation causes low renin and salt-sensitive arterial hypertension[J]. Endocrinology, 2012, 153(10): 4740-4748. |
[38] | Seidel E, Schewe J, Zhang J, et al. Enhanced Ca2+ signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (Cacna1hM1560V/+)[J]. Proc Natl Acad Sci U S A, 2021, 118(17): e2014876118. |
[39] | Schewe J, Seidel E, Forslund S, et al. Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation[J]. Nat Commun, 2019, 10(1): 5155. |
[40] | G?ppner C, Orozco IJ, Hoegg-Beiler MB, et al. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism[J]. Nat Commun, 2019, 10(1): 4678. |
/
〈 |
|
〉 |