Research report

Analysis of distribution and drug resistance of pathogenic bacteria of bloodstream infection in a tertiary hospital from 2019 to 2022

Expand
  • 1a. Department of Infectious Diseases; 1b. Department of Laboratory Medicine, Jieshou People’s Hospital, Jieshou 236500, China
    2a. Department of Infectious Diseases; 2b. Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2023-05-18

  Online published: 2024-03-18

Abstract

Objective To analyze the distribution and the drug resistance of bloodstream infection(BSI) pathogenic bacteria in hospitalized patients in Jieshou People’s Hospital, provide a basis for clinical guidance on the treatment of BSI patients, and prevent and control nosocomial infection in local area. Methods From January in 2019 to December in 2022, 6 727 blood culture samples of inpatients were screened from the laboratory information system (LIS) in our hospital, and 668 (9.93%) strains were isolated, and the distribution and drug resistance of the bacteria were analyzed retrospectively. Statistical analysis was performed using Excel 2021 and WHONET 5.6 software. Results Pathogens were mainly isolated from infection department, intensive care unit, general surgery. BSI caused by respiratory system infection, urinary system infection, and hepatobiliary system infection was the most common, and 30-day mortality rate of patients was 23.50%. Among the 668 isolated strains, 461(69.01%) strains were Gram-negative bacteria, 205(30.69%) strains were Gram-positive bacteria and 2(0.30%) strains were fungi. The top five isolated strains(84.28%) were 274 (41.01%) strains of Escherichia coli, 141(21.10%) strains of coagulase-negative Staphylococcus, 91(13.62%) strains of Klebsiella pneumoniae, 34(5.09%) strains of Staphylococcus aureus and 23(3.44%) strains of Pseudomonas aeruginosa, respectively. The detection rate of Escherichia coli in 2021-2022 was decreased compared with 2019-2020 (P<0.05), while the detection rate of Klebsiella pneumoniae was increased slightly in 2021-2022 compared with 2019-2020 (P>0.05). The resistance rates of Escherichia coli and Klebsiella pneumoniae to carbapenems, piperacillin/tazobactam, and amikacin were low, and the proportion of carbapenem-resistant Enterobacterales (CRE) was low (6.09%). Among Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) accounted for a relatively high proportion (76.47%), while Gram-positive bacteria including Enterococcus were not detected to be resistant to vancomycin, linezolid and tigecycline. Conclusions Escherichia coli, Klebsiella pneumoniae in Gram-negative bacteria, and the coagulase-negative Staphylococcus and Staphylococcus aureus in Gram-positive bacteria were the main strains of BSI in local area. The main Gram-negative bacteria were highly sensitive to carbapenems, amikacin, piperacillin/tazobactam. MRSA has a higher detection rate.

Cite this article

YANG Siheng, ZHANG Xuewu, HU Guoqi, ZHANG Yan, LI Ziqiang, SHENG Zike, XU Yumin . Analysis of distribution and drug resistance of pathogenic bacteria of bloodstream infection in a tertiary hospital from 2019 to 2022[J]. Journal of Internal Medicine Concepts & Practice, 2023 , 18(06) : 424 -430 . DOI: 10.16138/j.1673-6087.2023.06.009

References

[1] 杨祖耀, 詹思延, 王波, 等. 中国血流感染住院病死率的系统评价和meta分析[J]. 北京大学学报(医学版), 2010, 42(3): 304-307.
[2] Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014[J]. JAMA, 2017, 318(13):1241-1249.
[3] Isendahl J, Giske CG, Tegmark Wisell K, et al. Risk factors for community-onset bloodstream infection with extended-spectrum β-lactamase-producing Enterobacteriaceae: national population-based case-control study[J]. Clin Microbiol Infect, 2019, 25(11): 1408-1414.
[4] 中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染、炎症、修复, 2019, 20(1): 3-22.
[5] 刘周, 徐晨, 姚杰, 等. 血流感染肠杆菌科细菌临床分布与耐药性研究[J]. 中华医院感染学杂志, 2015, 25(24): 5559-5561.
[6] 胡田雨, 陈雪娥, 金浩龙, 等. 某三甲综合医院医院获得性血流感染病原菌分布及耐药性分析[J]. 中华医院感染学杂志, 2018, 28(8): 1139-1143.
[7] Quan J, Li X, Chen Y, et al. Prevalence of MCR-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study[J]. Lancet Infect Dis, 2017, 17(4): 400-410.
[8] 全国细菌耐药监测网. 2014-2019年血标本病原菌耐药性变迁[J]. 中国感染控制杂志, 2021, 20(2): 124-133.
[9] 邵盼盼, 许磊, 高有方. 2014-2018年某医院血培养阳性病原菌分布及耐药性分析[J]. 安徽医药, 2020, 24(6): 1202-1205.
[10] Chong Y, Shimoda S, Shimono N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae[J]. Infect Genet Evol, 2018, 61: 185-188.
[11] Dikoumba AC, Onanga R, Boundenga L, et al. Prevalence and characterization of extended-spectrum beta-lactamase-producing enterobacteriaceae in major hospitals in Gabon[J]. Microb Drug Resist, 2021, 27(11): 1525-1534.
[12] 李耘, 郑波, 吕媛, 等. 中国细菌耐药监测(CARST)研究2019-2020革兰氏阴性菌监测报告[J]. 中国临床药理学杂志, 2022, 38(5): 432-452.
[13] 王群, 王亦晨, 张祎博, 等. 2016-2020年某三级综合医院耐碳青霉烯类肺炎克雷伯菌检出趋势[J]. 中华医院感染学杂志, 2022, 32(6): 835-839.
[14] 卞秀娟, 包志瑶, 陈虹, 等. 血流感染耐碳青霉烯类肺炎克雷伯菌患者的死亡危险因素分析[J]. 内科理论与实践, 2022, 17(1): 73-77.
[15] Gudiol C, Cuervo G, Carratalà J. Optimizing therapy of bloodstream infection due to extended-spectrum β-lactamase-producing Enterobacteriaceae[J]. Curr Opin Crit Care, 2019, 25(5): 438-448.
[16] Xiao Y, Hang Y, Chen Y, et al. A retrospective analysis of risk factors and patient outcomes of bloodstream infection with extended-spectrum β-lactamase-producing Escherichia coli in a Chinese tertiary hospital[J]. Infect Drug Resist, 2020, 13: 4289-4296.
[17] 全国细菌耐药监测网. 2020年全国细菌耐药监测报告[J]. 中华检验医学杂志, 2022, 45(2): 122-136.
[18] 何礼贤, 肖永红, 路权, 等. 国家抗微生物治疗指南[M]. 2版. 北京: 人民卫生出版社, 2018: 7-8.
[19] Candel FJ, Matesanz David M, Barberán J. New perspectives for reassessing fosfomycin: applicability in current clinical practice[J]. Rev Esp Quimioter, 2019, 32 Suppl 1: 1-7.
[20] 伍婷婷, 曾吉, 景小鹏, 等. 血培养分离凝固酶阴性葡萄球菌的临床意义[J]. 中华传染病杂志, 2018, 36(11): 661-664.
[21] Elzi L, Babouee B, V?geli N, et al. How to discriminate contamination from bloodstream infection due to coagulase-negative Staphylococci[J]. Clin Microbiol Infect, 2012, 18(9): E355-E361.
[22] 马序竹, 吕媛, 郑波. 卫生部全国细菌耐药监测网2011年血流感染细菌耐药监测[J]. 中国临床药理学杂志, 2012, 28(12): 927-932.
[23] 陈云波, 嵇金如, 刘志盈, 等. 全国血流感染细菌耐药监测(BRICS)2021年度报告[J]. 中华临床感染病杂志, 2023, 16(1): 33-47.
[24] Walters MS, Eggers P, Albrecht V, et al. Vancomycin-resistant Staphylococcus aureus-Delaware, 2015[J]. MMWR Morb Mortal Wkly Rep, 2015, 64(37): 1056.
[25] Shariati A, Dadashi M, Chegini Z, et al. The global prevalence of daptomycin, tigecycline, quinupristin/dalfopristin, and linezolid-resistant Staphylococcus aureus and coagulase-negative Staphylococci strains[J]. Antimicrob Resist Infect Control, 2020, 9(1): 56.
[26] Joshi S, Shallal A, Zervos M. Vancomycin-resistant enterococci: epidemiology, infection prevention, and control[J]. Infect Dis Clin North Am, 2021, 35(4): 953-968.
[27] Zou J, Xia Y. Molecular characteristics and risk factors associated with linezolid-resistant Enterococcus faecalis infection in Southwest China[J]. J Glob Antimicrob Resist, 2020, 22:504-510.
Outlines

/