外科理论与实践 ›› 2022, Vol. 27 ›› Issue (06): 521-525.doi: 10.16139/j.1007-9610.2022.06.08
收稿日期:
2022-09-30
出版日期:
2022-11-25
发布日期:
2023-01-30
通讯作者:
李文岗,E-mail: 基金资助:
XIE Fuan1, REN Yantao1, LI Wengang1,2()
Received:
2022-09-30
Online:
2022-11-25
Published:
2023-01-30
中图分类号:
谢富安, 任彦韬, 李文岗. 腹膜后脂肪肉瘤研究现状和困境[J]. 外科理论与实践, 2022, 27(06): 521-525.
XIE Fuan, REN Yantao, LI Wengang. Study on retroperitoneal liposarcoma: current status and challenge[J]. Journal of Surgery Concepts & Practice, 2022, 27(06): 521-525.
[1] |
Gatta G, van der Zwan JM, Casali PG, et al. Rare cancers are not so rare: the rare cancer burden in Europe[J]. Eur J Cancer, 2011, 47(17):2493-2511.
doi: 10.1016/j.ejca.2011.08.008 pmid: 22033323 |
[2] |
Lee ATJ, Thway K, Huang PH, et al. Clinical and molecular spectrum of liposarcoma[J]. J Clin Oncol, 2018, 36(2):151-159.
doi: 10.1200/JCO.2017.74.9598 pmid: 29220294 |
[3] |
Bonvalot S, Raut CP, Pollock RE, et al. Technical considerations in surgery for retroperitoneal sarcomas: position paper from E-Surge, a master class in sarcoma surgery, and EORTC-STBSG[J]. Ann Surg Oncol, 2012, 19(9):2981-2991.
doi: 10.1245/s10434-012-2342-2 pmid: 22476756 |
[4] |
Gahvari Z, Parkes A. Dedifferentiated liposarcoma: systemic therapy options[J]. Curr Treat Options Oncol, 2020, 21(2):15.
doi: 10.1007/s11864-020-0705-7 URL |
[5] |
Matushansky I, Hernando E, Socci ND, et al. A deve-lopmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas[J]. Am J Pathol, 2008, 172(4):1069-1080.
doi: 10.2353/ajpath.2008.070284 pmid: 18310505 |
[6] |
Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas[J]. Cell, 2017, 171(4):950-965.
doi: S0092-8674(17)31203-5 pmid: 29100075 |
[7] |
Shimada S, Ishizawa T, Ishizawa K, et al. The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers[J]. Hum Pathol, 2006, 37(9):1123-1129.
pmid: 16938516 |
[8] |
Zhu H, Gao H, Ji Y, et al. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials[J]. J Hematol Oncol, 2022, 15(1):91.
doi: 10.1186/s13045-022-01314-3 URL |
[9] |
Ozenne P, Eymin B, Brambilla E, et al. The ARF tumor suppressor: structure, functions and status in cancer[J]. Int J Cancer, 2010, 127(10):2239-2247.
doi: 10.1002/ijc.25511 pmid: 20549699 |
[10] | Cissé MY, Pyrdziak S, Firmin N, et al. Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma[J]. Sci Transl Med, 2020, 12(547): eaay2163. |
[11] |
Casadei L, de Faria FCC, Lopez-Aguiar A, et al. Targetable pathways in the treatment of retroperitoneal liposarcoma[J]. Cancers (Basel), 2022, 14(6):1362.
doi: 10.3390/cancers14061362 URL |
[12] |
Dickson MA, Schwartz GK, Keohan ML, et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial[J]. JAMA Oncol, 2016, 2(7):937-940.
doi: 10.1001/jamaoncol.2016.0264 pmid: 27124835 |
[13] | Lee SE, Kim YJ, Kwon MJ, et al. High level of CDK4 amplification is a poor prognostic factor in well-differentiated and dedifferentiated liposarcoma[J]. Histol Histo-pathol, 2014, 29(1):127-138. |
[14] |
Italiano A, Bianchini L, Gjernes E, et al. Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas[J]. Clin Cancer Res, 2009, 15(18):5696-5703.
doi: 10.1158/1078-0432.CCR-08-3185 pmid: 19737942 |
[15] | Thirasastr P, Somaiah N. Overview of systemic therapy options in liposarcoma, with a focus on the activity of selinexor, a selective inhibitor of nuclear export in dediffe-rentiated liposarcoma[J]. Ther Adv Med Oncol, 2022, 14:17588359221081073. |
[16] |
Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404.
doi: 10.1158/2159-8290.CD-12-0095 pmid: 22588877 |
[17] |
Xi Y, Shen W, Ma L, et al. HMGA2 promotes adipoge-nesis by activating C/EBPβ-mediated expression of PPARγ[J]. Biochem Biophys Res Commun, 2016, 472(4):617-623.
doi: 10.1016/j.bbrc.2016.03.015 URL |
[18] |
Nishino J, Kim I, Chada K, et al. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression[J]. Cell, 2008, 135(2):227-239.
doi: 10.1016/j.cell.2008.09.017 pmid: 18957199 |
[19] |
Narita M, Narita M, Krizhanovsky V, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation[J]. Cell, 2006, 126(3):503-514.
doi: 10.1016/j.cell.2006.05.052 pmid: 16901784 |
[20] |
Barretina J, Taylor BS, Banerji S, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy[J]. Nat Genet, 2010, 42(8):715-721.
doi: 10.1038/ng.619 pmid: 20601955 |
[21] |
Serna VA, Kurita T. Patient-derived xenograft model for uterine leiomyoma by sub-renal capsule grafting[J]. J Biol Methods, 2018, 5(2):e91.
doi: 10.14440/jbm.2018.243 URL |
[22] |
Miyake K, Higuchi T, Oshiro H, et al. The combination of gemcitabine and docetaxel arrests a doxorubicin-resistant dedifferentiated liposarcoma in a patient-derived orthotopic xenograft model[J]. Biomed Pharmacother, 2019, 117:109093.
doi: 10.1016/j.biopha.2019.109093 URL |
[23] |
Loewenstein S, Lubezky N, Nizri E, et al. Adipose-induced retroperitoneal soft tissue sarcoma tumorigenesis: a potential crosstalk between sarcoma and fat cells[J]. Mol Cancer Res, 2016, 14(12):1254-1265.
pmid: 27621268 |
[24] |
Peng T, Zhang P, Liu J, et al. An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors[J]. Lab Invest, 2011, 91(3):392-403.
doi: 10.1038/labinvest.2010.185 pmid: 21060307 |
[25] | Xie F, Qin D, Lian L, et al. Establishment of an orthotopic perirenal space xenograft mouse model of retroperitoneal sarcoma[J]. Cancer Commun (Lond), 2021, 41(7):631-634. |
[26] |
Wu JW, Preuss C, Wang SP, et al. Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice[J]. PLoS Genet, 2017, 13(5):e1006716.
doi: 10.1371/journal.pgen.1006716 URL |
[27] |
Bi P, Yue F, Karki A, et al. Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice[J]. J Exp Med, 2016, 213(10):2019-2037.
doi: 10.1084/jem.20160157 URL |
[28] |
Gutierrez A, Snyder EL, Marino-Enriquez A, et al. Aberrant AKT activation drives well-differentiated liposarcoma[J]. Proc Natl Acad Sci U S A, 2011, 108(39):16386-16391.
doi: 10.1073/pnas.1106127108 URL |
[29] |
Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses[J]. Trends Mol Med, 2021, 27(12):1159-1174.
doi: 10.1016/j.molmed.2021.09.008 pmid: 34674972 |
[30] |
Li M, Jiang F, Xue L, et al. Recent progress in biosensors for detection of tumor biomarkers[J]. Molecules, 2022, 27(21):7327.
doi: 10.3390/molecules27217327 URL |
[31] |
Li S, He M, Lei Y, et al. Oral microbiota and tumor-a new perspective of tumor pathogenesis[J]. Microorganisms, 2022, 10(11):2206.
doi: 10.3390/microorganisms10112206 URL |
[32] | Suárez B, Solé C, Márquez M, et al. Circulating micro-RNAs as cancer biomarkers in liquid biopsies[J]. Adv Exp Med Biol, 2022, 1385:23-73. |
[33] |
Hirata M, Asano N, Katayama K, et al. Integrated exome and RNA sequencing of dedifferentiated liposarcoma[J]. Nat Commun, 2019, 10(1):5683.
doi: 10.1038/s41467-019-13286-z pmid: 31831742 |
[34] |
Liu W, Tong H, Zhang C, et al. Integrated genomic and transcriptomic analysis revealed mutation patterns of de-differentiated liposarcoma and leiomyosarcoma[J]. BMC Cancer, 2020, 20(1):1035.
doi: 10.1186/s12885-020-07456-2 pmid: 33115433 |
[35] |
Beird HC, Wu CC, Ingram DR, et al. Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin[J]. Cold Spring Harb Mol Case Stud, 2018, 4(2):a002386.
doi: 10.1101/mcs.a002386 URL |
[36] |
Egan JB, Barrett MT, Champion MD, et al. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements[J]. PLoS One, 2014, 9(2):e87113.
doi: 10.1371/journal.pone.0087113 URL |
[37] |
Somaiah N, Beird HC, Barbo A, et al. Targeted next ge-neration sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations[J]. Oncotarget, 2018, 9(28):19891-19899.
doi: 10.18632/oncotarget.24924 pmid: 29731991 |
[38] |
Taylor BS, DeCarolis PL, Angeles CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas[J]. Cancer Discov, 2011, 1(7):587-597.
doi: 10.1158/2159-8290.CD-11-0181 pmid: 22328974 |
[39] |
Lam RCT, Johnson D, Lam G, et al. Clinical applications of circulating tumor-derived DNA in the management of gastrointestinal cancers - current evidence and future directions[J]. Front Oncol, 2022, 12:970242.
doi: 10.3389/fonc.2022.970242 URL |
[40] |
Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications[J]. J Hematol Oncol, 2022, 15(1):131.
doi: 10.1186/s13045-022-01351-y URL |
[1] | 侯健. 治愈多发性骨髓瘤,敢问路在何方[J]. 内科理论与实践, 2022, 17(06): 425-427. |
[2] | 蔡晓波, 王建香, 陆伦根. 胆汁淤积的生物标志物研究进展[J]. 内科理论与实践, 2022, 17(01): 11-14. |
[3] | 罗婷, 周建桥. 超声新技术在预测乳腺癌分子标志物中的应用进展[J]. 诊断学理论与实践, 2020, 19(03): 325-328. |
[4] | 贺靖, 周明霞, 邹强,. 甲状腺癌肿瘤干细胞及其分子调控机制的研究进展[J]. 外科理论与实践, 2017, 22(02): 178-182. |
[5] | 陈旭, 张伟滨, 沈宇辉, 王君, 虞佩, 胡传真, 沈炜,. 二甲双胍对骨肉瘤干细胞形态、凋亡及分化能力的体外影响[J]. 诊断学理论与实践, 2016, 15(01): 41-46. |
[6] | 陈旭, 沈宇辉, 张伟滨,. 二甲双胍抗肿瘤效应及其机制的研究进展[J]. 诊断学理论与实践, 2015, 14(03): 270-274. |
[7] | 王超杰, 张子臻, 曹晖,. 胃肠道间质瘤相关MicroRNA的研究进展[J]. 外科理论与实践, 2015, 20(01): 77-80. |
[8] | 詹维伟, 倪晓枫,. 细针穿刺抽吸活检在甲状腺结节诊断中的应用[J]. 诊断学理论与实践, 2014, 13(05): 472-475. |
[9] | 刘巍, 孙勇伟,. 胰腺癌干细胞的研究进展[J]. 外科理论与实践, 2013, 18(05): 490-492. |
[10] | 周俭, 胡捷, 王征, 樊嘉,. 外周血循环核酸作为肝癌分子标志物的研究[J]. 外科理论与实践, 2012, 17(05): 409-412. |
[11] | 姜浩, 邹小明,. 胃癌与胃干细胞关系的研究现状[J]. 外科理论与实践, 2012, 17(02): 180-183. |
[12] | 巩超捷, 夏璐, 张宇星, 王海伟, 杜艳芝, 张济,. 无血清悬浮法培养结肠癌HT29细胞系及肿瘤干细胞样亚群筛选[J]. 内科理论与实践, 2010, 5(04): 314-318. |
[13] | 安勇, 姚捷, 卫积书, 陆子鹏, 蔡辉华, 戴存才, 钱祝银, 徐泽宽, 苗毅,. 胰腺癌细胞株PANC-1中肿瘤干细胞的体外耐药性研究[J]. 外科理论与实践, 2010, 15(01): 7-11. |
[14] | 吴志娟, 陈克敏, 管永靖,. 原发性腹膜后脂肪肉瘤CT和MRI的表现[J]. 诊断学理论与实践, 2009, 8(04): 453-455. |
[15] | 王银平, 殷志强, 孙婧璟,. 乳腺癌干细胞研究进展[J]. 外科理论与实践, 2008, 13(02): 178-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||