腹膜后脂肪肉瘤研究现状和困境
收稿日期: 2022-09-30
网络出版日期: 2023-01-30
基金资助
国家自然科学基金(82272935);厦门大学医学院-上海江夏血液技术有限公司联合实验室项目(XDHT2020010C)
Study on retroperitoneal liposarcoma: current status and challenge
谢富安, 任彦韬, 李文岗 . 腹膜后脂肪肉瘤研究现状和困境[J]. 外科理论与实践, 2022 , 27(06) : 521 -525 . DOI: 10.16139/j.1007-9610.2022.06.08
| [1] | Gatta G, van der Zwan JM, Casali PG, et al. Rare cancers are not so rare: the rare cancer burden in Europe[J]. Eur J Cancer, 2011, 47(17):2493-2511. |
| [2] | Lee ATJ, Thway K, Huang PH, et al. Clinical and molecular spectrum of liposarcoma[J]. J Clin Oncol, 2018, 36(2):151-159. |
| [3] | Bonvalot S, Raut CP, Pollock RE, et al. Technical considerations in surgery for retroperitoneal sarcomas: position paper from E-Surge, a master class in sarcoma surgery, and EORTC-STBSG[J]. Ann Surg Oncol, 2012, 19(9):2981-2991. |
| [4] | Gahvari Z, Parkes A. Dedifferentiated liposarcoma: systemic therapy options[J]. Curr Treat Options Oncol, 2020, 21(2):15. |
| [5] | Matushansky I, Hernando E, Socci ND, et al. A deve-lopmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas[J]. Am J Pathol, 2008, 172(4):1069-1080. |
| [6] | Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas[J]. Cell, 2017, 171(4):950-965. |
| [7] | Shimada S, Ishizawa T, Ishizawa K, et al. The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers[J]. Hum Pathol, 2006, 37(9):1123-1129. |
| [8] | Zhu H, Gao H, Ji Y, et al. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials[J]. J Hematol Oncol, 2022, 15(1):91. |
| [9] | Ozenne P, Eymin B, Brambilla E, et al. The ARF tumor suppressor: structure, functions and status in cancer[J]. Int J Cancer, 2010, 127(10):2239-2247. |
| [10] | Cissé MY, Pyrdziak S, Firmin N, et al. Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma[J]. Sci Transl Med, 2020, 12(547): eaay2163. |
| [11] | Casadei L, de Faria FCC, Lopez-Aguiar A, et al. Targetable pathways in the treatment of retroperitoneal liposarcoma[J]. Cancers (Basel), 2022, 14(6):1362. |
| [12] | Dickson MA, Schwartz GK, Keohan ML, et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial[J]. JAMA Oncol, 2016, 2(7):937-940. |
| [13] | Lee SE, Kim YJ, Kwon MJ, et al. High level of CDK4 amplification is a poor prognostic factor in well-differentiated and dedifferentiated liposarcoma[J]. Histol Histo-pathol, 2014, 29(1):127-138. |
| [14] | Italiano A, Bianchini L, Gjernes E, et al. Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas[J]. Clin Cancer Res, 2009, 15(18):5696-5703. |
| [15] | Thirasastr P, Somaiah N. Overview of systemic therapy options in liposarcoma, with a focus on the activity of selinexor, a selective inhibitor of nuclear export in dediffe-rentiated liposarcoma[J]. Ther Adv Med Oncol, 2022, 14:17588359221081073. |
| [16] | Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404. |
| [17] | Xi Y, Shen W, Ma L, et al. HMGA2 promotes adipoge-nesis by activating C/EBPβ-mediated expression of PPARγ[J]. Biochem Biophys Res Commun, 2016, 472(4):617-623. |
| [18] | Nishino J, Kim I, Chada K, et al. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression[J]. Cell, 2008, 135(2):227-239. |
| [19] | Narita M, Narita M, Krizhanovsky V, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation[J]. Cell, 2006, 126(3):503-514. |
| [20] | Barretina J, Taylor BS, Banerji S, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy[J]. Nat Genet, 2010, 42(8):715-721. |
| [21] | Serna VA, Kurita T. Patient-derived xenograft model for uterine leiomyoma by sub-renal capsule grafting[J]. J Biol Methods, 2018, 5(2):e91. |
| [22] | Miyake K, Higuchi T, Oshiro H, et al. The combination of gemcitabine and docetaxel arrests a doxorubicin-resistant dedifferentiated liposarcoma in a patient-derived orthotopic xenograft model[J]. Biomed Pharmacother, 2019, 117:109093. |
| [23] | Loewenstein S, Lubezky N, Nizri E, et al. Adipose-induced retroperitoneal soft tissue sarcoma tumorigenesis: a potential crosstalk between sarcoma and fat cells[J]. Mol Cancer Res, 2016, 14(12):1254-1265. |
| [24] | Peng T, Zhang P, Liu J, et al. An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors[J]. Lab Invest, 2011, 91(3):392-403. |
| [25] | Xie F, Qin D, Lian L, et al. Establishment of an orthotopic perirenal space xenograft mouse model of retroperitoneal sarcoma[J]. Cancer Commun (Lond), 2021, 41(7):631-634. |
| [26] | Wu JW, Preuss C, Wang SP, et al. Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice[J]. PLoS Genet, 2017, 13(5):e1006716. |
| [27] | Bi P, Yue F, Karki A, et al. Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice[J]. J Exp Med, 2016, 213(10):2019-2037. |
| [28] | Gutierrez A, Snyder EL, Marino-Enriquez A, et al. Aberrant AKT activation drives well-differentiated liposarcoma[J]. Proc Natl Acad Sci U S A, 2011, 108(39):16386-16391. |
| [29] | Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses[J]. Trends Mol Med, 2021, 27(12):1159-1174. |
| [30] | Li M, Jiang F, Xue L, et al. Recent progress in biosensors for detection of tumor biomarkers[J]. Molecules, 2022, 27(21):7327. |
| [31] | Li S, He M, Lei Y, et al. Oral microbiota and tumor-a new perspective of tumor pathogenesis[J]. Microorganisms, 2022, 10(11):2206. |
| [32] | Suárez B, Solé C, Márquez M, et al. Circulating micro-RNAs as cancer biomarkers in liquid biopsies[J]. Adv Exp Med Biol, 2022, 1385:23-73. |
| [33] | Hirata M, Asano N, Katayama K, et al. Integrated exome and RNA sequencing of dedifferentiated liposarcoma[J]. Nat Commun, 2019, 10(1):5683. |
| [34] | Liu W, Tong H, Zhang C, et al. Integrated genomic and transcriptomic analysis revealed mutation patterns of de-differentiated liposarcoma and leiomyosarcoma[J]. BMC Cancer, 2020, 20(1):1035. |
| [35] | Beird HC, Wu CC, Ingram DR, et al. Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin[J]. Cold Spring Harb Mol Case Stud, 2018, 4(2):a002386. |
| [36] | Egan JB, Barrett MT, Champion MD, et al. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements[J]. PLoS One, 2014, 9(2):e87113. |
| [37] | Somaiah N, Beird HC, Barbo A, et al. Targeted next ge-neration sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations[J]. Oncotarget, 2018, 9(28):19891-19899. |
| [38] | Taylor BS, DeCarolis PL, Angeles CV, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas[J]. Cancer Discov, 2011, 1(7):587-597. |
| [39] | Lam RCT, Johnson D, Lam G, et al. Clinical applications of circulating tumor-derived DNA in the management of gastrointestinal cancers - current evidence and future directions[J]. Front Oncol, 2022, 12:970242. |
| [40] | Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications[J]. J Hematol Oncol, 2022, 15(1):131. |
/
| 〈 |
|
〉 |