Journal of Surgery Concepts & Practice ›› 2024, Vol. 29 ›› Issue (03): 220-229.doi: 10.16139/j.1007-9610.2024.03.07
• Experts forum • Previous Articles Next Articles
WANG Yaqi, XIA Fan, ZHANG Zhen()
Received:
2024-03-25
Online:
2024-05-25
Published:
2024-09-03
Contact:
ZHANG Zhen
E-mail:zhen_zhang@fudan.edu.cn
CLC Number:
WANG Yaqi, XIA Fan, ZHANG Zhen. Review and prospect of neoadjuvant chemoradiotherapy combined with immunotherapy in locally advanced rectal cancer[J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 220-229.
Tab 1
Efficacy summary of clinical trials of neoadjuvant chemoradiotherapy combined with immunotherapy for MSS LARC
类别 | 名称/NCT编号 | 年份 | 国家地区 | 期别 | 样本量 | 病人特征 | 研究设计 | CR率(%) |
---|---|---|---|---|---|---|---|---|
长程放 化疗序 贯免疫 治疗 | VOLTAGE-A[ NCT02948348 | 2019 | 日本 | Ⅰb | 37 | Ⅲ期 23% | LCRT+Nivo×5 | 30 |
NSABP FR-2[ NCT03102047 | 2021 | 美国 | Ⅱ | 45 | Ⅲ期 89% | LCRT+Durva×4 | 53 | |
PANDORA[ NCT04083365 | 2021 | 意大利 | Ⅱ | 55 | T3-4 95%; N+ 79% | LCRT+Nivo×3 | 32.7 | |
长程放 化疗同 期免疫 治疗 | AVANA[ NCT03854799 | 2021 | 意大利 | Ⅱ | 101 | Ⅲ期 94% | LCRT/Avelu×6 | 23 |
R-IMMUNE[ NCT03127007 | 2023 | 北美 | Ⅰb/Ⅱ | 37 | Ⅲ期 84% | LCRT/Atezo×4 | 27 | |
NECTAR[ NCT04911517 | 2024 | 中国北京 | Ⅱ | 50 | T3-4 92%; N+ 64% | LCRT/Tisleli×3 | 40 | |
长程放 化疗联 合化疗 免疫 | NRG-GI002[ NCT02921256 | 2021 | 美国 | Ⅱ | 95 | 高危T3-4/N+ | FOLFOX×8+(LCRT+Pembro×6) | 45 |
长海研究[ ChiCTR2100042785 | 2022 | 中国上海 | Ⅱ | 23 | T2-T3; N0 69% | LCRT/Sintili×2+(CAPOX×6+ Sintili×2) | 52.2 | |
PKUCH 04[ NCT04340401 | 2022 | 中国北京 | Ⅱ | 25 | N2 76%; MRF+56% | (CAPOX+ Camreli)×3+LCRT+CAPOX×2 | 49.3 | |
DUREC[ NCT04293419 | 2023 | 西班牙 | Ⅱ | 61 | T3-4/N+ | FOLFOX×6+Durva×6+LCRT | 39 | |
STARS-RC03[ NCT04906044 | 2023 | 中国吉林 | Ⅱ | 30 | T3-4/N+ | TNT/Sintili | 55 | |
短程放 疗序贯 化疗免 疫 | Averectal[ NCT03503630 | 2021 | 欧洲 | Ⅱ | 40 | Ⅲ期 91% | SCRT+(FOLFOX+Avelu)×6 | 37.5 |
武汉协和Ⅱ期[ NCT04231552 | 2021 | 中国湖北 | Ⅱ | 30 | 高危T3-4/N+ | SCRT+(CAPOX+Camreli)×2 | 46 | |
UNION[ NCT04928807 | 2023 | 中国湖北 | Ⅲ | 231 | T3-4/N+ | Arm1: SCRT+(CAPOX+Camreli)×2 Arm2: LCRT+CAPOX×2 | 39.8 vs. 15.3 | |
TORCH[ NCT04518280 | 2023 | 中国上海 | Ⅱ | 130 | T3-4/N+ | Arm1: SCRT+(CAPOX+Toripali)×6 Arm2: (CAPOX+Toripali)×2+SCRT+(CAPOX+Toripali)×4 | 57.4 vs. 54.0 | |
PRECAM[ NCT05216653 | 2023 | 中国浙江 | Ⅱ | 32 | T3-4/N+ | SCRT+ CAPOX×2/Envafo (qw)×6 | 66.7 |
Tab 2
Brief summary of ongoing clinical trials of neoadjuvant chemoradiotherapy combined with immunotherapy for MSS LARC
类别 | 名称/NCT编号 | 年份 | 国家 | 期别 | 样本量 | 患者特征 | 研究设计 | CR |
---|---|---|---|---|---|---|---|---|
长程放化疗 序贯免疫 治疗 | TIMENT-R NCT05507112 | 2022 | 中国北京 | Ⅱ | 100 | T3-4/N+ | Arm1: LCRT+8-12w后Tisleli×3+TME Arm2: LCRT+8-12w后TME | pCR |
Ave-Rec NCT03299660 | 2023 | 澳大利亚 | Ⅱ | 37 | T3b-4/N1-2 | LCRT+Avelu×4 | pCR | |
长程放化疗 同期免疫 治疗 | 北京友谊Ⅲ期 NCT05245474 | 2023 | 中国北京 | Ⅲ | 186 | cT3-4aN0M0 cT1- 4aN1-2M0 | Arm1: LCRT/Tisleli×3 Arm2: LCRT+Tisleli×3 Arm3: LCRT | pCR |
CHINOREC NCT04124601 | 2022 | 奥地利 | Ⅱ | 80 | T3-4/N+ | LCRT/(Ipili×1+Nivo×3) | AEs, mrTRG, pTRG | |
长程放化疗 联合化疗 免疫 | 中山肿瘤研究 NCT04304209 | 2019 | 中国广州 | Ⅱ | 134 | T3-4/N+ | Arm1 ((/Sintili+CAPOX)×4+50Gy)评估后 ①+ TME/WW + CAPOX×4 ②+ CAPOX×4 + TME/WW Arm 2 pMMR:CAPOX×4+50Gy评估后 ①+ TME/WW + CAPOX×4 ②+ CAPOX×4 + TME/WW | CR |
CHOICE Ⅱ NCT05215379 | 2022 | 中国上海 | Ⅱ-Ⅲ | 距肛≤5cm T1-3aN0-1 | Arm1: LCRT+CAPOX×2 Arm2: LCRT/Sintili×2+(CAPOX+ Sintili)×2 | cCR | ||
短程放疗序 贯化疗免疫 | STELLAR Ⅱ NCT05484024 | 2023 | 中国北京 | Ⅲ | 588 | T3-4/N+ | Arm1: SCRT + (CAPOX×4/FOLFOX×6)//Sintili×4 Arm2: SCRT + CAPOX×4/FOLFOX×6 | CR |
浙江肿瘤 NCT04663763 | 2023 | 中国浙江 | Ⅱ | 40 | T3-4/N+ | SCRT + (CAPOX+Sintili)×4 | pCR | |
N-PRC NCT05576480 | 2023 | 中国上海 | Ⅱ | 55 | T3-4/N+ | (SCRT+Penpuli d6/7)+(CAPOX+Penpuli)×4 | pCR | |
PRECAM-R NCT05752136 | 2023 | 中国浙江 | Ⅱ | 32 | T3-4/N+ | Arm1 SCRT+CAPOX×2 Arm2 SCRT+ CAPOX×2/Envafo (qw)×6 | pCR | |
长程vs.短程 放疗序贯化 疗免疫 | PRIME-RT NCT04621370 | 2020 | 英国 | Ⅱ | 48 | cT3b+, N+, EMVI+ or low rectal tumors | Arm1: (SCRT+FOLFOX×6)/Durva Arm2: (LCRT+FOLFOX×4)/Durva | CR |
[1] | VAN DER VALK M J M, HILLING D E, BASTIAANNET E, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study[J]. Lancet, 2018, 391(10139):2537-2545. |
[2] | GARCIA-AGUILAR J, CHOW O S, SMITH D D, et al. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial[J]. Lancet Oncol, 2015, 16(8):957-966. |
[3] | FERNÁNDEZ-MARTOS C, PERICAY C, APARICIO J, et al. Phase Ⅱ, randomized study of concomitant chemoradiotherapy followed by surgery and adjuvant capecitabine plus oxaliplatin (CAPOX) compared with induction CAPOX followed by concomitant chemoradiotherapy and surgery in magnetic resonance imaging-defined, locally advanced rectal cancer: grupo cancer de recto 3 study[J]. J Clin Oncol, 2010, 28(5):859-865. |
[4] | CERCEK A, ROXBURGH C S D, STROMBOM P, et al. Adoption of total neoadjuvant therapy for locally advanced rectal cancer[J]. JAMA Oncol, 2018, 4(6):e180071. |
[5] | BAHADOER R R, DIJKSTRA E A, VAN ETTEN B, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(1):29-42. |
[6] |
CONROY T, BOSSET J F, ETIENNE P L, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(5):702-715.
doi: 10.1016/S1470-2045(21)00079-6 pmid: 33862000 |
[7] | COHEN R, COLLE R, PUDLARZ T, et al. Immune checkpoint inhibition in metastatic colorectal cancer harboring microsatellite instability or mismatch repair deficiency[J]. Cancers (Basel), 2021, 13(5):1149. |
[8] | ANDRÉ T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23):2207-2218. |
[9] | CERCEK A, LUMISH M, SINOPOLI J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25):2363-2376. |
[10] | CHEN G, JIN Y, GUAN W L, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5):422-431. |
[11] |
KAMRAVA M, BERNSTEIN M B, CAMPHAUSEN K, et al. Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: the Three Musketeers or just another quixotic combination?[J]. Mol Biosyst, 2009, 5(11):1262-1270.
doi: 10.1039/b911313b pmid: 19823740 |
[12] |
LUGADE A A, MORAN J P, GERBER S A, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor[J]. J Immunol, 2005, 174(12):7516-7523.
doi: 10.4049/jimmunol.174.12.7516 pmid: 15944250 |
[13] | TWYMAN-SAINT VICTOR C, RECH A J, MAITY A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015, 520(7547):373-377. |
[14] |
BERNSTEIN M B, KRISHNAN S, HODGE J W, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?[J]. Nat Rev Clin Oncol, 2016, 13(8):516-524.
doi: 10.1038/nrclinonc.2016.30 pmid: 26951040 |
[15] |
KO E C, RABEN D, FORMENTI S C. The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung cancer[J]. Clin Cancer Res, 2018, 24(23):5792-5806.
doi: 10.1158/1078-0432.CCR-17-3620 pmid: 29945993 |
[16] | POSTOW M A, CALLAHAN M K, BARKER C A, et al. Immunologic correlates of the abscopal effect in a patient with melanoma[J]. N Engl J Med, 2012, 366(10):925-931. |
[17] |
BRIX N, TIEFENTHALLER A, ANDERS H, et al. Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences[J]. Immunol Rev, 2017, 280(1):249-279.
doi: 10.1111/imr.12573 pmid: 29027221 |
[18] | BANDO H, TSUKADA Y, INAMORI K, et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer[J]. Clin Cancer Res, 2022, 28(6):1136-1146. |
[19] | THOMAS J. G, GREG Y, SAMUEL A. J, et al. Phase Ⅱ study of durvalumab following neoadjuvant chemoRT in operable rectal cancer: NSABP FR-2[J]. J Clin Oncol, 2022, 40(4 suppl):99. |
[20] | STEFANO T, ELISA G, CHIARA Z, et al. A phase Ⅱ study of capecitabine plus concomitant radiation therapy followed by durvalumab (MEDI4736) as preoperative treatment in rectal cancer: PANDORA study final results[J]. J Clin Oncol, 2022, 40(17 suppl):LBA3513. |
[21] | LISA S, MARIA B, SALVATORE C, et al. Phase Ⅱ study of preoperative (PREOP) chemoradiotherapy (CTRT) plus avelumab (AVE) in patients (PTS) with locally advanced rectal cancer (LARC): the AVANA study[J]. J Clin Oncol, 2021, 39(15 suppl):3511. |
[22] | CARRASCO J, SCHRÖDER D, SINAPI I, et al. R-IMMUNE interim analysis:a phase Ⅰb/Ⅱ study to evaluate safety and efficacy of atezolizumab combined with radio-chemotherapy in a preoperative setting for patients with localized rectal cancer[J]. Ann Oncol, 2021, 32(suppl 5):S537. |
[23] | YANG Z, GAO J, ZHENG J, et al. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study[J]. Signal Transduct Target Ther, 2024, 9(1):56. |
[24] |
RAHMA O E, YOTHERS G, HONG T S, et al. Use of total neoadjuvant therapy for locally advanced rectal cancer: initial results from the pembrolizumab arm of a phase 2 randomized clinical trial[J]. JAMA Oncol, 2021, 7(8):1225-1230.
doi: 10.1001/jamaoncol.2021.1683 pmid: 34196693 |
[25] | ZHOU L Q, YU G Y, SHEN Y X, et al. The clinical efficacy and safety of neoadjuvant chemoradiation therapy with immunotherapy for the organ preservation of ultra low rectal cancer: a single arm and open label exploratory study[J]. J Clin Oncol, 2022, 40(16 suppl):e15603. |
[26] | WU A W, Li Y J, Ji D B, et al. PKUCH 04 trial: total neoadjuvant chemoradiation combined with neoadjuvant PD-1 blockade for pMMR/MSS locally advanced middle to low rectal cancer[J]. J Clin Oncol, 2022, 40(16 suppl):3609. |
[27] | CAPDEVILA C J, ALONSO V, MACIAS D I, et al. The DUREC trial: durvalumab plus total neoadjuvant therapy in locally advanced rectal cancer - a multicenter, single-arm, phase Ⅱ study (GEMCAD-1703)[J]. Ann Oncol, 2023, 34(suppl 2):S430-S431. |
[28] | LIU X, HE L, TONG W, et al. Safety and effectiveness analysis of neoadjuvant chemoradiation plus consolidative chemotherapy with concurrent anti-PD-1 therapy in mid-low locally advanced rectal cancer[J]. Ann Oncol, 2023, 34(suppl 1):S159. |
[29] |
CROCENZI T, COTTAM B, NEWELL P, et al. A hypofractionated radiation regimen avoids the lymphopenia associated with neoadjuvant chemoradiation therapy of borderline resectable and locally advanced pancreatic adenocarcinoma[J]. J Immunother Cancer, 2016, 4:45.
doi: 10.1186/s40425-016-0149-6 pmid: 27532020 |
[30] | LAN J, LI R, YIN L M, et al. Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 101(1):74-87. |
[31] |
SHAMSEDDINE A, ZEIDAN Y H, EL HUSSEINI Z, et al. Efficacy and safety-in analysis of short-course radiation followed by mFOLFOX-6 plus avelumab for locally advanced rectal adenocarcinoma[J]. Radiat Oncol, 2020, 15(1):233.
doi: 10.1186/s13014-020-01673-6 pmid: 33028346 |
[32] | LIN Z, CAI M, ZHANG P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11):e003554. |
[33] | ZHANG T, TAO K, LIN Z, et al. LBA25 Neoadjuvant short-course radiotherapy followed by camrelizumab plus chemotherapy versus long-course chemoradiotherapy followed by chemotherapy in locally advanced rectal cancer: a randomized phase Ⅲ trial (UNION)[J]. Ann Oncol, 2023, 34(suppl 2):S1266-S1267. |
[34] | XIA F, WANG Y, WANG H, et al. Randomized phase Ⅱ trial of immunotherapy-based total neoadjuvant therapy for proficient mismatch repair or microsatellite stable locally advanced rectal cancer (TORCH)[J]. J Clin Oncol, 2024,JCO2302261. |
[35] | DAI S, WANG F, SHEN Y B, et al. Efficacy and safety of neoadjuvant preoperative short-course radiation followed by envafolimab plus CAPEOX in microsatellite stable (MSS)/mismatch repair proficient (pMMR) locally advanced rectal cancer[J]. J Clin Oncol, 2023, 41(4 suppl):134. |
[36] |
DARRAGH L B, GADWA J, PHAM T T, et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors[J]. Nat Commun, 2022, 13(1):7015.
doi: 10.1038/s41467-022-34676-w pmid: 36385142 |
[37] |
MARCISCANO A E, GHASEMZADEH A, NIRSCHL T R, et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy[J]. Clin Cancer Res, 2018, 24(20):5058-5071.
doi: 10.1158/1078-0432.CCR-17-3427 pmid: 29898992 |
[1] | SONG Zijia, ZHAO Ren. Research progress in organ preservation strategies for early rectal cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 211-216. |
[2] | XIE Haiting, HU Yeting, LI Jun, DING Kefeng. Optimal timing of surgery for locally advance rectal cancer: how we choose [J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 206-210. |
[3] | ZHANG Tianshuai, ZHOU Leqi, YU Guanyu, ZHANG Wei. Current status and prospect of CAR-T cell immunotherapy for colorectal cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 483-487. |
[4] | HAN Xu, WANG Wenquan, LOU Wenhui, LIU Liang. Emerging developments in immune checkpoint inhibitor therapy for gastroenteropancreatic neuroendocrine neoplasm [J]. Journal of Surgery Concepts & Practice, 2023, 28(03): 267-272. |
[5] | YANG Yingchi, PANG Kai, ZHANG Zhongtao. Influence of neoadjuvant radiotherapy combined with immunotherapy on minimally invasive surgeries for rectal cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(03): 186-189. |
[6] | XING Ying, CHENG Shi. Neoadjuvant therapy for gallbladder cancer: current status and challenge [J]. Journal of Surgery Concepts & Practice, 2023, 28(02): 110-114. |
[7] | LI Jianfang, YU Junxian, YAN Chao, ZHU Zhenggang, LIU Bingya. Hotspots in basic and translational research of gastric cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(01): 7-16. |
[8] | ZHANG Xihao, ZHANG Xinyun, CAO Manqing, ZHANG Jinliang, WANG Huaqi, ZHANG Su, FU Zhou, WANG Lu, ZHANG Ti. Both anti-angiogenesis and immunotherapy combined with interventional therapy in treatment of hepatocellular carcinoma: effect of hepatic artery infusion chemotherapy compared with hepatic artery chemoembolization [J]. Journal of Surgery Concepts & Practice, 2022, 27(02): 152-157. |
[9] | . [J]. Journal of Surgery Concepts & Practice, 2016, 21(02): 142-145. |
[10] | . [J]. Journal of Surgery Concepts & Practice, 2010, 15(02): 119-122. |
[11] | . [J]. Journal of Surgery Concepts & Practice, 2004, 9(04): 321-324. |
[12] | . [J]. Journal of Surgery Concepts & Practice, 2003, 8(01): 62-64. |
[13] | . [J]. Journal of Surgery Concepts & Practice, 2002, 7(04): 298-301+304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||