[1] |
BANALES J M, MARIN J J G, LAMARCA A, et al. Cho-langiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9):557-588.
|
[2] |
YUAN B, ZHAO X, WANG X, et al. Patient-derived organoids for personalized gallbladder cancer modelling and drug screening[J]. Clin Transl Med, 2022, 12(1):e678.
doi: 10.1002/ctm2.678
pmid: 35075805
|
[3] |
QURESHI A A, WEHRLE C J, FERREIRA-GONZALEZ S, et al. Tumor organoids for primary liver cancers: a systematic review of current applications in dia-gnostics, disease modeling, and drug screening[J]. JHEP Rep, 2024, 6(12):101164.
|
[4] |
ISIDAN A, YENIGUN A, SOMA D, et al. Development and characterization of human primary cholangiocarcinoma cell lines[J]. Am J Pathol, 2022, 192(9):1200-1217.
doi: 10.1016/j.ajpath.2022.05.007
pmid: 35640676
|
[5] |
MAIER C F, ZHU L, NANDURI L K, et al. Patient-derived organoids of cholangiocarcinoma[J]. Int J Mol Sci, 2021, 22(16):8675.
|
[6] |
KU J L, YOON K A, KIM I J, et al. Establishment and characterisation of six human biliary tract cancer cell lines[J]. Br J Cancer, 2002, 87(2):187-193.
|
[7] |
ROOS F J M, VAN TIENDEREN G S, WU H, et al. Human branching cholangiocyte organoids recapitulate functional bile duct formation[J]. Cell Stem Cell, 2022, 29(5):776-794.e13.
doi: 10.1016/j.stem.2022.04.011
pmid: 35523140
|
[8] |
LEE H S, HAN D H, CHO K, et al. Integrative analysis of multiple genomic data from intrahepatic cholangiocarcinoma organoids enables tumor subtyping[J]. Nat Commun, 2023, 14(1):237.
doi: 10.1038/s41467-023-35896-4
pmid: 36646721
|
[9] |
SAITO Y, MURAMATSU T, KANAI Y, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma[J]. Cell Rep, 2019, 27(4):1265-1276.e4.
doi: S2211-1247(19)30427-9
pmid: 31018139
|
[10] |
VAN TIENDEREN G S, GROOT KOERKAMP B, IJZERMANS J N M, et al. Organoid models to study liver cancer cells and their extracellular environment[J]. Cancers (Basel), 2019, 11(11):1706.
|
[11] |
GUO Y, LI Q, YE Q, et al. Construction and drug screening of co-culture system using extrahepatic cholangiocarcinoma organoids and tumor-associated macrophages[J]. Heliyon, 2024, 10(17):e36377.
|
[12] |
ZHOU G, LIESHOUT R, VAN TIENDEREN G S, et al. Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells[J]. Br J Cancer, 2022, 127(4):649-660.
|
[13] |
LIESHOUT R, FARIA A V S, PEPPELENBOSCH M P, et al. Kinome profiling of cholangiocarcinoma organoids reveals potential druggable targets that hold promise for treatment stratification[J]. Mol Med, 2022, 28(1):74.
doi: 10.1186/s10020-022-00498-1
pmid: 35764936
|
[14] |
YANG X, LI W, PALASUBERNIAM P, et al. Effects of silencing heme biosynthesis enzymes on 5-aminolevulinic acid-mediated protoporphyrin Ⅸ fluorescence and photodynamic therapy[J]. Photochem Photobiol, 2015, 91(4):923-930.
|
[15] |
ROBERTS D W, OLSON J D, EVANS L T, et al. Red-light excitation of protoporphyrin Ⅸ fluorescence for subsurface tumor detection[J]. J Neurosurg, 2018, 128(6):1690-1697.
|
[16] |
KUSHIBIKI T, NOJI T, EBIHARA Y, et al. 5-aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal metastases in biliary tract cancer in mice[J]. In Vivo, 2017, 31(5):905-908.
pmid: 28882957
|
[17] |
FUJIWARA H, TAKAHARA N, TATEISHI K, et al. 5-aminolevulinic acid-mediated photodynamic activity in patient-derived cholangiocarcinoma organoids[J]. Surg Oncol, 2020,35:484-490.
|
[18] |
XIN H Y, SUN R Q, ZOU J X, et al. Association of BRAF variants with disease characteristics, prognosis, and targeted therapy response in intrahepatic cholangiocarcinoma[J]. JAMA Netw Open, 2023, 6(3):e231476.
|
[19] |
KOCH M, NICKEL S, LIESHOUT R, et al. Label-free imaging analysis of patient-derived cholangiocarcinoma organoids after sorafenib treatment[J]. Cells, 2022, 11(22):3613.
|
[20] |
LI L, ZHOU Y, ZHANG Y, et al. A combination therapy of bortezomib, CXCR4 inhibitor, and checkpoint inhibitor is effective in cholangiocarcinoma in vivo[J]. iScience, 2023, 26(3):106095.
|
[21] |
PAULI C, HOPKINS BD, PRANDI D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5):462-477.
|
[22] |
NUCIFORO S, FOFANA I, MATTER MS, et al. Orga-noid models of human liver cancers derived from tumor needle biopsies[J]. Cell Rep, 2018, 24(5):1363-1376.
|
[23] |
SHIIHARA M, ISHIKAWA T, SAIKI Y, et al. Development of a system combining comprehensive genotyping and organoid cultures for identifying and testing genotype-oriented personalised medicine for pancreatobiliary cancers[J]. Eur J Cancer, 2021,148:239-250.
|
[24] |
VOTANOPOULOS K I, MAZZOCCHI A, SIVAKUMAR H, et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study[J]. Ann Surg Oncol, 2019, 26(1):139-147.
doi: 10.1245/s10434-018-7008-2
pmid: 30414038
|