Journal of Surgery Concepts & Practice >
Application and research prospects of artificial intelligence in breast cancer pathological diagnosis
Received date: 2024-08-12
Online published: 2025-01-23
Breast cancer is one of the most common cancers affecting women globally. With the advent of digital pathology slide scanners and the continuous evolution of deep learning algorithms, there has been a significant advancement in the application of artificial intelligence (AI) in the diagnosis and treatment of breast cancer. This article provided an overview of the current research and application status of AI in breast cancer pathological diagnosis, and summarized the challenges encountered as well as future directions in this field.
Key words: Breast cancer; Pathology diagnosis; Artificial intelligence(AI)
DA Qian , RUAN Miao , FEI Xiaochun , WANG Chaofu . Application and research prospects of artificial intelligence in breast cancer pathological diagnosis[J]. Journal of Surgery Concepts & Practice, 2024 , 29(05) : 389 -395 . DOI: 10.16139/j.1007-9610.2024.05.04
| [1] | HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China,2022[J]. J Natl Cancer Cent, 2024, 4(1):47-53. |
| [2] | CALDERARO J, KATHER J N. Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers[J]. Gut, 2021, 70(6):1183-1193. |
| [3] | GIULIANO A E, CONNOLLY J L, EDGE S B, et al. Breast Cancer-Major changes in the American joint committee on cancer eighth edition cancer staging manual[J]. CA Cancer J Clin, 2017, 67(4):290-303. |
| [4] | NIAZI M K K, PARWANI A V, GURCAN M N. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5):e253-e261. |
| [5] | YU K H, HEALEY E, LEONG T Y, et al. Medical artificial intelligence and human values[J]. N Engl J Med, 2024, 390(20):1895-1904. |
| [6] | RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. N Engl J Med, 2019, 380(14):1347-1358. |
| [7] | BERA K, SCHALPER K A, RIMM D L, et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol, 2019, 16(11):703-715. |
| [8] | CHENG J, REN C, LIU G, et al. Development of high-resolution dedicated PET-based radiomics machine learning model to predict axillary lymph node status in early-stage breast cancer[J]. Cancers (Basel), 2022, 14(4):950. |
| [9] | CAMPANELLA G, HANNA M G, GENESLAW L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8):1301-1309. |
| [10] | JACKSON H W, FISCHER J R, ZANOTELLI V R T, et al. The single-cell pathology landscape of breast cancer[J]. Nature, 2020, 578(7796):615-620. |
| [11] | LIU M, HU L, TANG Y, et al. A deep learning method for breast cancer classification in the pathology images[J]. IEEE J Biomed Health Inform, 2022, 26(10):5025-5032. |
| [12] | ZHANG T, TAN T, WANG X, et al. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease[J]. Cell Rep Med, 2023, 4(8):101131. |
| [13] | NAM S, CHONG Y, JUNG CK, et al. Introduction to digital pathology and computer-aided pathology[J]. J Pathol Transl Med, 2020, 54(2):125-134. |
| [14] | SANDERS M E, SCHUYLER P A, DUPONT W D, et al. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up[J]. Cancer, 2005, 103(12):2481-2484. |
| [15] | YAMAMOTO Y, SAITO A, TATEISHI A, et al. Quantitative diagnosis of breast tumors by morphometric classifcation of microenvironmental myoepithelial cells using a machine learning approach[J]. Sci Rep, 2017,7:46732. |
| [16] | FONDóN I, SARMIENTO A, GARCíA A I, et al. Automatic classifcation of tissue malignancy for breast carcinoma diagnosis[J]. Comput Biol Med, 2018,96:41-51. |
| [17] | CRUZ-ROA A, GILMORE H, BASAVANHALLY A, et al. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection[J]. PLoS One, 2018, 13(5):e0196828. |
| [18] | HAN Z, WEI B, ZHENG Y, et al. Breast cancer multi-classification from histopathological images with structured deep learning model[J]. Sci Rep, 2017, 7(1):4172. |
| [19] | VETA M, VAN DIEST P J, WILLEMS S M, et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images[J]. Med Image Anal, 2015, 20(1):237-248. |
| [20] | WANG Y, ACS B, ROBERTSON S, et al. Improved breast cancer histological grading using deep learning[J]. Ann Oncol, 2022, 33(1):89-98. |
| [21] | ROMO-BUCHELI D, JANOWCZYK A, GILMORE H, et al. Automated tubule nuclei quantification and correlation with Oncotype DX risk categories in ER+ breast cancer whole slide images[J]. Sci Rep, 2016,6:32706. |
| [22] | KATAYAMA A, TOSS M S, PARKIN M, et al. Atypia in breast pathology: what pathologists need to know[J]. Pathology, 2022, 54(1):20-31. |
| [23] | NATEGHI R, DANYALI H, HELFROUSH M S. A deep learning approach for mitosis detection: application in tumor proliferation prediction from whole slide images[J]. Artif Intell Med, 2021,114:102048. |
| [24] | ELSHARAWY K A, GERDS T A, RAKHA E A, et al. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision[J]. Histopathology, 2021, 79(2):187-199. |
| [25] | CHALLA B, TAHIR M, HU Y, et al. Artifcial intelligence-aided diagnosis of breast cancer lymph node metastasis on histologic slides in a digital workfow[J]. Mod Pathol, 2023, 36(8):100216. |
| [26] | STEINER D F, MACDONALD R, LIU Y, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer[J]. Am J Surg Pathol, 2018, 42(12):1636-1646. |
| [27] | HAMMOND M E, HAYES D F, DOWSETT M, et al. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer[J]. J Clin Oncol, 2010, 28(16):2784-2795. |
| [28] | VIALE G, REGAN M M, MAIORANO E, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1-98[J]. J Clin Oncol, 2007, 25(25):3846-3852. |
| [29] | AHERN T P, BECK A H, ROSNER B A, et al. Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms[J]. J Clin Pathol, 2017, 70(5):428-434. |
| [30] | KOOPMAN T, BUIKEMA H J, HOLLEMA H, et al. What is the added value of digital image analysis of HER2 immunohistochemistry in breast cancer in clinical practice? A study with multiple platforms[J]. Histopatho-logy, 2019, 74(6):917-924. |
| [31] | SERNA G, SIMONETTI S, FASANI R, et al. Sequential immunohistochemistry and virtual image reconstruction using a single slide for quantitative Ki67 measurement in breast cancer[J]. Breast, 2020,53:102-110. |
| [32] | HUMPHRIES M P, HYNES S, BINGHAM V, et al. Automated tumour recognition and digital pathology scoring unravels new role for PD-L1 in predicting good outcome in ER-/HER2+ breast cancer[J]. J Oncol, 2018,2018,2937012. |
| [33] | PILIPOW K, DARWICH A, LOSURDO A. T-cell-based breast cancer immunotherapy[J]. Semin Cancer Biol, 2021,72:90-101. |
| [34] | SAVAS P, TEO Z L, LEFEVRE C, et al. The subclonal architecture of metastatic breast cancer: results from a prospective community-based rapid autopsy program “CASCADE”[J]. PLoS Med, 2016, 13(12):e1002204. |
| [35] | 邢辉, 徐梓航, 董培, 等. 基于人工智能辅助乳腺癌新辅助治疗后肿瘤浸润淋巴细胞评估及可重复性分析[J]. 临床与实验病理学杂志, 2023, 39(7):776-781. |
| XING F, XU Z H, DONG P, et al. Evaluation and reproducibility of artificial intelligence-assisted TILs after neoadjuvant therapy for breast cancer[J]. J Clin Exp Pathol, 2023, 39(7):776-781. | |
| [36] | RASMUSSON A, ZILENAITE D, NESTARENKAITE A, et al. Immunogradient indicators for antitumor response assessment by automated tumor-stroma interface zone detection[J]. Am J Pathol, 2020, 190(6):1309-1322. |
| [37] | 李凤玲, 卫亚妮, 步宏. 人工智能在新辅助治疗后乳腺癌疗效及预后预测中的研究现状[J]. 临床与实验病理学杂志, 2023, 39(7):833-837. |
| LI F L, WEI Y N, BU H. Current research status of artificial intelligence in breast cancer efficacy and prognosis prediction after neoadjuvant therapy[J]. J Clin Exp Pathol, 2023, 39(7):833-837. | |
| [38] | DODINGTON D W, LAGREE A, TABBARAH S, et al. Analysis of tumor nuclear features using artificial intelligence to predict response to neoadjuvant chemotherapy in high-risk breast cancer patients[J]. Breast Cancer Res Treat, 2021, 186(2):379-389. |
| [39] | SAEDNIA K, LAGREE A, ALERA M A, et al. Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies[J]. Sci Rep, 2022, 12(1):9690. |
| [40] | LI F, YANG Y, WEI Y, et al. Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer[J]. NPJ Breast Cancer, 2022, 8(1):124. |
| [41] | SAMMUT S J, CRISPIN-ORTUZAR M, CHIN S F, et al. Multi-omic machine learning predictor of breast cancer therapy response[J]. Nature, 2022, 601(7894):623-629. |
| [42] | 邓仕杰, 刘蘅安, 杨春雪, 等. 数字化智慧病理科建设中数字病理扫描仪的选择[J]. 临床与实验病理学杂志, 2023, 39(7):847-851. |
| DENG S J, LIU H A, YANG C X, et al. Selection of digital pathology scanners in the construction of digital smart pathology departments[J]. J Clin Exp Pathol, 2023, 39(7):847-851. | |
| [43] | 卞修武, 张培培, 平轶芳, 等. 下一代诊断病理学[J]. 中华病理学杂志, 2022, 51(1):3-6. |
| BIAN X W, ZHANG P P, PING Y F, et al. Next-generation diagnostic pathology[J]. Chin J Pathol, 2022, 51(1):3-6. |
/
| 〈 |
|
〉 |