Please wait a minute...
首 页   关 于   联系我们
上海交通大学学报(农业科学版)  2016, Vol. 34 Issue (1): 16-23    DOI: 10.3969/J.ISSN.1671-9964.2016.01.004
0
  本期目录 | 过刊浏览 | 高级检索 |
JAK-STAT通路介导gx-50针对神经元的抗氧化保护作用的研究
陈祎(), 史诗, 梁冬丽, 王朝霞, 乔中东()
上海交通大学 生命科学技术学院, 上海200240
JAK-STAT Pathway Mediates Anti-Oxidative Effects of gx-50 on Neuron
Yi CHEN, Shi SHI, Dong-li LIANG, Zhao-xia WANG, Zhong-dong QIAO
School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
全文: PDF(4475 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

gx-50已被证明在阿尔茨海默症中具有神经保护作用, 然而其抗氧化机制在很大程度上仍然是未知的。为探究gx-50对在阿尔茨海默症中处于氧化应激状态的神经元细胞起到的保护作用, 本文通过测定细胞内活性氧(ROS)水平、细胞内总超氧化物歧化酶(SOD)活性和细胞分泌物丙二醛(MDA)含量检测gx-50在细胞水平的抗氧化能力。并检测了gx-50在细胞和组织水平对于JAK-STAT信号通路和caspase-3蛋白表达水平的影响。结果表明, gx-50可以使暴露于β淀粉样蛋白(Aβ)的PC12细胞分泌的ROS和MDA水平降低, 并保护胞内总SOD酶活性; gx-50可以在细胞和组织水平活化JAK-STAT信号通路, 可以降低PC12细胞内caspase-3蛋白活性亚基的相对表达水平; 而JAK2的特异性抑制剂, AG490, 逆转了gx-50的以上抗氧化保护作用。这表明gx-50可以通过活化JAK-STAT通路, 一定程度上减弱神经元所受到的氧化损伤, 对神经元起到保护作用, 因此在阿尔茨海默症预防治疗方面具有一定的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈祎
史诗
梁冬丽
王朝霞
乔中东
关键词 阿尔茨海默症氧化应激神经元gx-50JAK-STAT通路    
Abstract

A novel compound derived from Zanthoxylum, gx-50(N-[2-(3, 4-dimethoxyphenyl)ethyl]-3-phenyl-acrylamide), has been demonstrated that it has neuroprotective effects against Alzheimer’s disease(AD)by our previous study.This study focuses on the mechanism of its antioxidant properties against AD.We measured the levels of intracellular reactive oxygen species(ROS), superoxide dismutase(SOD)activity and malondialdehyde(MDA)to determine the anti-oxidative ability of gx-50 at cellular level.We also measured gx-50’s effect on JAK-STAT signaling pathway and the relative expression levels of activated caspase-3.Data showed that gx-50 reduced the levels of reactive oxygen species(ROS)and malondialdehyde(MDA), and recovered the activity of total intracellular superoxide dismutase(SOD)in neuronal PC12 cells exposed to Aβ.After gx-50 pretreatment, the levels of p-JAK2 and p-STAT3 both increased in PC12 cells, while they were down-regulated in Aβ-treated group.In present study, we also found that gx-50 reduced the relative expression level of the activated caspase-3 in PC12 cells by activating JAK-STAT signaling pathway.Results demonstrated that gx-50 reduced amyloid-beta(Aβ)induced oxidative stress in neuron-like PC12 cells by enhancing the activation of JAK-STAT signaling pathway.It might help to protect neurons in Alzheimer's disease.

Key wordsAlzheimer’s disease    oxidative stress    neuron    gx-50    JAK-STAT pathway
收稿日期: 2015-04-29      出版日期: 2016-03-08
基金资助:国家自然科学基金(J1210047)
作者简介:

作者简介: 陈祎(1991-), 女, 硕士生, 研究方向:分子生物学, E-mail:chenyi527@hotmail.com;

通讯作者: 乔中东(1957-), 男, 博士生导师, 教授, 研究方向:环境因素对细胞发育的影响, E-mail:zdqiao@sjtu.edu.cn

引用本文:   
陈祎, 史诗, 梁冬丽, 王朝霞, 乔中东. JAK-STAT通路介导gx-50针对神经元的抗氧化保护作用的研究[J]. 上海交通大学学报(农业科学版), 2016, 34(1): 16-23.
Yi CHEN, Shi SHI, Dong-li LIANG, Zhao-xia WANG, Zhong-dong QIAO. JAK-STAT Pathway Mediates Anti-Oxidative Effects of gx-50 on Neuron. Journal of Shanghai Jiaotong University (Agricultural Sciences), 2016, 34(1): 16-23.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtua/CN/10.3969/J.ISSN.1671-9964.2016.01.004      或      http://www.qk.sjtu.edu.cn/jsjtua/CN/Y2016/V34/I1/16
Fig.1  gx-50对神经元样PC12细胞内ROS的表达水平的影响

实验误差采用mean±SD表示, 实验重复3~4次, **表示P< 0.01

Fig.2  gx-50对神经元样PC12细胞内总超氧化物歧化酶活性的影响

严格按照试剂盒说明检测各分组中PC12细胞内总SOD酶活性。实验误差采用mean±SD表示, 实验重复3~4次, *表示P<0.05, **表示P<0.01

Fig.3  gx-50对神经元样PC12细胞分泌的MDA水平的影响

使用微量MDA检测试剂盒检测细胞培养上清液中PC2细胞分泌的MDA水平。实验误差采用mean ± SD表示, **表示P<0.01

Fig.4  gx-50在神经元样PC12细胞内对JAK-STAT信号通路的影响

采用Western blot检测PC12细胞内p-JAK2和p-STAT3蛋白的表达量(A), 其相对表达水平使用内参GAPDH蛋白表达量作参考(B)。实验误差采用mean±SD表示, 实验重复3~4次, *表示P< 0.05, **表示P< 0.01

Fig.5  免疫组织化学实验检测gx-50在APP-Tg小鼠脑组织内对JAK-STAT信号通路的影响

p-STAT3免疫阳性的细胞被染成棕色。细胞核使用苏木素复染

Fig.6  gx-50在PC12细胞内对活化的caspase-3蛋白相对表达水平的影响

采用Western blot检测PC12细胞内caspase-3蛋白的表达量(A), 其活化水平用caspase-3蛋白的17 kDa亚基相较于35 kDa的procasepase-3蛋白的相对表达量表示(B)。实验误差采用mean±SD表示, 实验重复3~4次, **表示P<0.01

[1] Praticò D.Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy[J].Annals of the New York Academy of Sciences, 2008, 1147(1):70-78.
doi: 10.1196/annals.1427.010 pmid: 19076432
[2] McLellan M E, Kajdasz S T, Hyman B T, et al.In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy[J].The Journal of Neuroscience, 2003, 23(6):2212-2217.
pmid: 328613207063181838931172922232222126576808
[3] Tang M, Shi S, Guo Y, et al.GSK-3/CREB pathway involved in the gx-50's effect on Alzheimer's disease[J].Neuropharmacology, 2014, 81:256-266.
doi: 10.1016/j.neuropharm.2014.02.008 pmid: 24565641
[4] Manickam M, Tulsawani R.Survival response of hippocampal neurons under low oxygen conditions induced by hippophae rhamnoides is associated with JAK/STAT signaling[J].PloS One, 2014, 9(2):e87694.
doi: 10.1371/journal.pone.0087694 pmid: 24516559
[5] Zeng H, Chen Q, Zhao B.Genistein ameliorates beta-amyloid peptide(25-35)-induced hippocampal neuronal apoptosis[J].Free Radical biology and Medicine, 2004, 36(2):180-188.
doi: 10.1016/j.freeradbiomed.2003.10.018
[6] Finkel T, Holbrook N J.Oxidants, oxidative stress and the biology of ageing[J].Nature, 2000, 408(6809):239-247.
doi: 10.1038/35041687 pmid: 11089981
[7] Vanfleteren J R.Oxidative stress and ageing in Caenorhabditis elegans[J].Biochem J, 1993, 292:605-608.
[8] Larsen P L.Aging and resistance to oxidative damage in Caenorhabditis elegans[J].Proceedings of the National Academy of Sciences, 1993, 90(19):8905-8909.
doi: 10.1073/pnas.90.19.8905 pmid: 8415630
[9] Martin G M, Austad S N, Johnson T E.Genetic analysis of ageing:role of oxidative damage and environmental stresses[J].Nature Genetics, 1996, 13(1):25-34.
doi: 10.1038/ng0596-25 pmid: 8673100
[10] Yan L J, Levine R L, Sohal R S.Oxidative damage during aging targets mitochondrial aconitase[J].Proceedings of the National Academy of Sciences, 1997, 94(21):11168-11172.
doi: 10.1073/pnas.94.21.11168 pmid: 9326580
[11] Reddy P H.Amyloid precursor protein-mediated free radicals and oxidative damage:Implications for the development and progression of Alzheimer's disease[J].Journal of Neurochemistry, 2006, 96(1):1-13.
[12] Tang M, Wang Z, Zhou Y, et al.A novel drug candidate for Alzheimer's disease treatment:gx-50 derived from Zanthoxylum Bungeanum[J].Journal of Alzheimer's Disease, 2013, 34(1):203-213.
doi: 10.3233/JAD-121831 pmid: 23186988
[13] Guo Y, Shi S, Tang M, et al.The suppressive effects of gx-50 on Aβ-induced chemotactic migration of microglia[J].International Immunopharmacology, 2014, 19(2):283-289.
[14] Chiba T, Yamada M, Aiso S.Targeting the JAK2/STAT3 axis in Alzheimer's disease[J].Expert Opinion on Therapeutic Targets, 2009, 13:1155-1167.
doi: 10.1517/14728220903213426 pmid: 19663649
[15] Chiba T, Yamada M, Sasabe J, et al.Amyloid-β causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons[J].Molecular Psychiatry, 2008, 14(2):206-222.
doi: 10.1038/mp.2008.105
[16] Zouein F A, Duhé R J, Arany I, et al.Loss of STAT3 in mouse embryonic fibroblasts reveals its Janus-like actions on mitochondrial function and cell viability[J].Cytokine, 2014, 66(1):7-16.
doi: 10.1016/j.cyto.2013.12.006 pmid: 24548419
[17] Shaw S, Bencherif M, Marrero M B.Janus kinase 2, an early target of α7 nicotinic acetylcholine receptor-mediated neuroprotection against Aβ-(1-42)amyloid[J].Journal of Biological Chemistry, 2002, 277(47):44920-44924.
doi: 10.1074/jbc.M204610200
[18] Szczepanek K, Lesnefsky E J, Larner A C.Multi-tasking:nuclear transcription factors with novel roles in the mitochondria[J].Trends in Cell Biology, 2012, 22(8):429-437.
doi: 10.1016/j.tcb.2012.05.001 pmid: 22705015
[19] Szczepanek K, Chen Q, Larner A C, et al.Cytoprotection by the modulation of mitochondrial electron transport chain:the emerging role of mitochondrial STAT3[J].Mitochondrion, 2012, 12(2):180-189.
[20] Andreyev A Y, Kushnareva Y E, Starkov A.Mitochondrial metabolism of reactive oxygen species[J].Biochemistry(Moscow), 2005, 70(2):200-214.
doi: 10.1007/s10541-005-0102-7 pmid: 15807660
[1] 常小龙a,丁国良b,娄建安c. 神经元网络同步放电的抗扰特性[J]. 上海交通大学学报(自然版), 2014, 48(10): 1485-1490.
[2] 孔薇1,牟晓阳2. 基于大脑不同区域的阿尔茨海默症基因表达数据分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 994-997.
[3] 张文龙, 于洪洁. 一种星形神经网络的混沌同步[J]. 上海交通大学学报(自然版), 2013, 47(02): 220-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
沪交ICP备05221
版权所有:《上海交通大学学报(农业科学版)》编辑部
主管单位:中华人民共和国教育部 主办单位:上海交通大学 出版单位:上海交通大学学报编辑部
地址:上海市七莘路2678号 上海交通大学七宝校区36号信箱 邮政编码:201101 电话:021-64789728 电子邮件:xuebao@sjtu.edu.cn