|
|
Study on the Evolution Law of Potassium with Long Time Scale Climate Change in Jiangjun Loess Section of the Middle Reaches of the Jinghe River |
Li-jie WU1,2, Juan YU1,3, Jian-sheng SHI1, Cheng-min WANG1, Zhi-wei BI1, Jiao GUO1 |
1.The Institute of Hydrogeology and Environmental Geology; CAGS; Shijiazhuang 050061, China 2.Department of Geology, Northwest University, Xi 'an 710069, China 3.School of Environment Studies, China University of Geosciences, Wuhan 430074, China |
|
|
Abstract From the perspective of application of paleoclimatology, the evolution law of potassium in soil with long time scale climate change is discussed quantitatively and the main conclusions are as follows.The relationship of the content of available potassium and slowly available potassium and the annual precipitation or the annual temperature obey the exponential function model.The fitting equations of potassium effectiveness and the annual precipitation or the annual temperature accord with the parabolic function model.There is a critical value, only the average temperature(over 9.5°C)or the annual precipitation(over 577.3mm), and its effectiveness presents obviously a progressive increase with the increase of the annual precipitation or the annual temperature.The fitting relationship of the content of available potassium and slowly available potassium, potassium effectiveness and paleoclimatic coupling conditions comply with the Cobd-Douglas equations.
|
Received: 15 April 2015
Published: 08 March 2016
|
|
|
|
深度/m Depth | 地层岩性特征 Stratum rock characteristic | 采样数/组 Sampling number | 测试数/组 Testing number | 0~0.38 | 表土(TS):浅灰褐色亚砂土, 疏松多孔、根系发育 | 19 | 14 | 0.38~0.60 | 现代黄土(L0):浅灰黄色亚砂土, 与下伏地层界线清晰; | 11 | 11 | 0.60~1.60 | 古土壤(S0):灰黑色黑垆土, 疏松多孔, 根系发育, 含大量的灰白色钙质假菌丝体, 部分土粒呈团粒状。自上而下, 菌丝体含量逐渐减少; | 50 | 50 | 1.60~2.40 | 过渡性黄土(Lt):浅灰黄色亚砂土, 含少量的菌丝体; | 40 | 40 | 2.40~3.00 | 马兰黄土(L1):浅灰黄色亚砂土。 | 30 | 30 |
|
The formation characteristics and the number of sampling and test samples of the Jiangjun section
|
拟合回归方程 Fitting regression equation | 相关系数 Correlation coefficient | 拟合度 Fitting degree | F值 F value | p-值 p-value | AKP=19.125 | 0.828 7 | 0.686 7 | 252.633 6 | 0.000 1 | SAKP=382.08 | 0.853 5 | 0.728 4 | 330.035 0 | 0.000 1 | IKP=17374 | 0.301 7 | 0.091 0 | 12.861 6 | 0.000 5 | TKP=17426 | 0.413 5 | 0.171 0 | 26.142 4 | 0.000 1 | AKT=26.831 | 0.831 6 | 0.691 6 | 257.975 9 | 0.000 1 | SAKT=382.08 | 0.856 4 | 0.733 4 | 338.471 8 | 0.000 1 | IKT=17954 | 0.299 0 | 0.089 4 | 12.611 1 | 0.000 5 | TKT=18235 | 0.411 5 | 0.169 3 | 25.843 0 | 0.000 1 |
|
The curve fitting results of between the forms of potassium and the annual precipitationandthe annual average temperature
|
|
The linear fitting of between the supply intensity of potassium and the annual precipitation(a), the annual temperature(b)
|
|
The curve fitting of between the potassium availability and the annual precipitation(a), the annual temperature(b)
|
拟合回归方程 Fitting regression equation | 相关系数 Correlation coefficient | 拟合度 Fitting degree | F值 F value | p-值 p-value | AK=P44.749T-32.954 | 0.844 4 | 0.713 0 | 175.148 8 | 0.000 1 | SAK=e-131.750P29.464T-21.646 | 0.866 0 | 0.750 0 | 211.513 9 | 0.000 1 | IK=e35.463P-5.549T4.328 | 0.335 6 | 0.112 6 | 8.949 5 | 0.000 2 | TK=e24.992P-3.304T2.660 2 | 0.427 4 | 0.182 7 | 15.755 0 | 0.000 1 | E=e-157.011P33.821T-25.085 | 0.859 3 | 0.738 4 | 199.018 2 | 0.000 1 | S=e-74.360P15.285T-11.308 | 0.303 0 | 0.550 4 | 30.642 7 | 0.000 1 |
|
The Cobd-Douglas equation between potassium and paleoclimate factors
|
[1] |
Sparks D L, Liebhardt W C.Temperature effects on potassium exchange and selectivity in Delaware soils[J].Soil Science, 1982, 133:10-17.
|
[2] |
金继运, 高广领, 王泽良, 等.温度对土壤钾素容量和强度(Q/I)关系的影响[J].土壤学报, 1992, 29(2):137-141.
|
[3] |
Jin J Y.Development of potassium application and lack of soil potassium in north China [A]//Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences, Peking Office of Canada Phosphorus and Potassium Institute.Soil K and yield responses in North China [C].Beijing:China Agricultural Science and Technology Press, 1994:1-5.
|
[4] |
张亦驰, 李林, 史喜林, 等.土壤钾素形态及有效性的研究进展[J].吉林农业科学, 2013, 38(6):52-54.
|
[5] |
LIU R L, Jin J Y, Wu R G, Liang M Z.Study on the characteristics of potassium cycling in different soil crop systems in northern China[J].Plant Nutr Fert Sci., 2000, 6(2):123-132.
|
[6] |
陈防, 鲁剑巍, 万运帆, 等.长期施钾对作物增产及土壤钾素含量及形态的影响[J].土壤学报, 2000, 37(2):233-241.
|
[7] |
彭浩, 张兴昌, 邵明安.黄土区土壤钾素径流流失规律研究[J].水土保持学报, 2002, 16(1):47-49.
|
[8] |
彭浩, 张兴昌, 邵明安.黄土区土壤钾素径流流失试验研究[J].水土保持学报, 2004, 18(1):70-73.
|
[9] |
朱咏莉, 刘军, 王益权, 等.干湿交替过程对黄土高原几种主要土壤钾有效性的影响[J].土壤通报, 2002, 33(6):435-437.
|
[10] |
龙怀玉, 李韵珠, 张维理, 等.温度对潮土和褐土钾吸附动力学的影响[J].中国农业科学, 2004, 37(6):878-885.
|
[11] |
包耀贤, 吴发启, 贾玉奎, 等.黄土丘陵沟壑区人工农田土壤钾素特征研究[J].干旱地区农业研究, 2008, 26(2):1-6.
|
[12] |
Spaiks D L.Potassium dynamics in soil[J].Advances in Soil Science, 1987(6):1-63.
|
[13] |
金继运. 土壤钾素研究进展[J].土壤学报, 1993, 30(1):94-101.
|
[14] |
杨振明, 阎飞, 韩丽梅.土壤钾素研究的新进展[J].吉林农业大学学报, 1998, 20(3):99-106.
|
[15] |
刘会玲, 陈亚恒, 段毅力, 等.土壤钾素研究进展[J].河北农业大学学报, 2002, 25:66-68.
|
[16] |
刘东生. 黄土与干旱环境[M].合肥:安徽科学技术出版社, 2009.
|
[17] |
唐启义. DPS数据处理系统:实验设计、统计分析及数据挖掘[M].北京:科学出版社, 2010:341-342.
|
[18] |
Heller F, Shen C D, Beer J, et al.Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications[J].Earth and Planetary Science Letters, 1993, 114(2-3):385-390
|
[19] |
L Houyuan, Han Jiamao, Wu Naiqin, et al.Magnetic susceptibility of Chinese modern soil and its palaeoclimatic significance[J].Science in China(Series B), 1994, 24(12):1290-1297.
|
[20] |
Maher B A, Thompson R.Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols[J].Quaternary Research, 1995, 44(3):383-391.
|
[1] |
HUANG Jiahan,WANG xinjie,WANG Jiong. An Optically Driven Microgripper Based on Photostrictive Materials[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2014, 48(12): 1681-1687. |
[2] |
CHEN Xia,ZHANG Jing,XU Guangyan. Three-Dimension Path Planning for Unmanned Aerial Vehicle Under Moving Threat[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2014, 48(10): 1400-1405. |
[3] |
FANG Jihua,GU Bo,ZHANG Jie. Mathematical Model and Performance Analysis with Variable Condition of Enthalpy Recovery Wheel[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2014, 48(06): 809-815. |
[4] |
BAO Xi-rong1 (包喜荣), LIU Yu-yan1 (刘宇雁), LI Ge1 (李革), CHEN Lin1 (陈林) WANG Jian-guo1 (王建国), WU Zhang-zhong2 (吴章忠), TIAN Zhong-liang2 (田仲良). Research and Application of
Pre-bending Automatic Control Models of 100 m Rail[J]. Journal of shanghai Jiaotong University (Science), 2012, 17(4): 465-469. |
[5] |
ZHAO Fu-Hai-a, b , HUA Xue-Ming-a, b , YE Xin-a, b , WU Yi-Xiong-a, b , c . Mathematical Model of Quasi-state Temperature Distribution of Hot-Wire during Hot-Wire TIG Welding Process[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2012, 46(07): 1063-1068. |
[6] |
JIA Wen-Hua- , YIN Chen-Bo. Modeling and Stability Analysis of a Pressure Compensator for Flow-Control Valve[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2011, 45(04): 561-564. |
[7] |
ZHU Zhi-Xia-1, LI Bei-2. Wave-current Numerical Model for Shanghai Nanhuizui Inning Project[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2011, 45(04): 590-596. |
|
|
|
|