Please wait a minute...
空天防御  2021, Vol. 4 Issue (3): 55-64    
0
  智能技术空天防御应用专栏 本期目录 | 过刊浏览 | 高级检索 |
面向多目标拦截问题的协同任务分配方法研究
郑书坚1, 赵文杰1, 钟永建2, 贺敏2, 赵文龙2
1. 浙江大学 航空航天学院,浙江 杭州  310027; 2.上海机电工程研究所,上海  201109
Collaborative Task Assignment for Multi-objective Interception Problem
ZHENG Shujian1, ZHAO Wenjie1, ZHONG Yongjian2,HE Min2, ZHAO Wenlong2
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, Zhejiang, China; 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
全文: PDF(1675 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对多枚空空导弹攻击多架飞机的作战场景,研究集群协同的多目标任务分配,实现对多架飞机的拦截。针对战场环境高动态、高复杂性的特点,采取基于灰狼优化算法(grey wolf optimization, GWO)的实时任务分配方案。为解决灰狼优化算法容易陷入局部最优、易早熟的问题,提出了两方面的改进策略:一是优化种群,以佳点集理论来增强种群遍历性;二是改进算法,以禁忌搜索更新头狼位置来提高算法的全局搜索能力,使其更易跳出局部最优区域,并采用自适应调整策略来加快算法的收敛速度。最后,对两组由异构导弹组成的导弹群进行多目标任务分配的仿真实验,实验结果验证了算法的可行性和优越性,满足实时动态任务分配的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 多目标拦截任务分配集群协同    
Abstract:Aiming at the combat scenario of multiple air-to-air missiles attacking multiple aircrafts, the multi-objective task assignment of cluster collaboration is studied to intercept multiple aircrafts. In view of the highly dynamic and complex characteristics of the battlefield environment, a real-time task assignment scheme based on Grey Wolf Optimization (GWO) is adopted. In order to solve the shortcoming of the Grey Wolf Optimization, which is easy to fall into local optimum and easy to mature, two improvement strategies are proposed. One is to optimize the population, which uses the good point set theory to enhance the ergodicity of the population. The second is to improve the algorithm, using tabu search to update the position of the head to improve the global search ability of the algorithm, so that it can jump out of the local optimal region more easily, and adopt the adaptive adjustment strategy to speed up the convergence speed of the algorithm. Finally, the simulation experiment of multi-objective task assignment is carried out for a missile cluster consisting of two groups of heterogeneous missiles. The experimental results verify the feasibility and superiority of the algorithm, and meet the requirements of real-time dynamic task assignment.
Key words multi-objective interception    task assignment    cluster collaboration
收稿日期: 2021-02-08      出版日期: 2021-09-07
ZTFLH:  TP18  
基金资助:上海航天科技创新基金(SAST2019-10)
通讯作者: 赵文杰(1985—),男,副研究员,主要研究方向为智能协同决策与规划。     E-mail: 22024092@zju.edu.cn
作者简介: 郑书坚(1998—),男,硕士研究生,主要研究方向为多智能体集群控制。
引用本文:   
郑书坚, 赵文杰, 钟永建, 贺敏, 赵文龙. 面向多目标拦截问题的协同任务分配方法研究[J]. 空天防御, 2021, 4(3): 55-64.
ZHENG Shujian, ZHAO Wenjie, ZHONG Yongjian, HE Min, ZHAO Wenlong. Collaborative Task Assignment for Multi-objective Interception Problem . Air & Space Defense, 2021, 4(3): 55-64.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2021/V4/I3/55

参考文献
[1] 郭建国, 胡冠杰, 许新鹏, 刘悦, 曹晋. 基于强化学习的多对多拦截目标分配方法[J]. 空天防御, 2024, 7(1): 24-31.
[2] 裘柯钧, 鲍中凯, 陈璐. 民用客机总装车间自动引导车任务分配及路径规划[J]. 上海交通大学学报, 2023, 57(1): 93-102.
[3] 张贇, 邱忠宇, 蔡云泽. 基于偏好联盟博弈的导弹集群分布式任务分配模型[J]. 空天防御, 2021, 4(3): 24-32.
[4] 刘西, 李贤, 陈伟, 从光涛, 李如飞. 基于NSGA-Ⅲ算法的多目标分配方法研究[J]. 空天防御, 2021, 4(1): 109-116.
[5] 陈侠,魏晓明,徐光延. 多无人机模糊态势的分布式协同空战决策[J]. 上海交通大学学报(自然版), 2014, 48(07): 907-913.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司