Please wait a minute...
空天防御  2024, Vol. 7 Issue (4): 88-98    
0
  专业技术 本期目录 | 过刊浏览 | 高级检索 |
基于循环神经网络的高超声速机动目标状态估计算法
臧红岩1, 谢晓龙2, 徐亚周2, 陶业1, 高长生1
1. 哈尔滨工业大学 航天学院,黑龙江 哈尔滨 150001; 2. 上海机电工程研究所,上海 201109
Hypersonic Maneuvering Target State Estimation Algorithm Based on Recurrent Neural Network
ZANG Hongyan1, XIE Xiaolong2, XU Yazhou2, TAO Ye1, GAO Changsheng1
1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
全文: PDF(3080 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对高超声速机动目标运动状态的实时、高精确估计问题,提出了一种基于循环神经网络的高超声速机动目标状态估计算法。首先,将气动参数作为缓变量引入半速度系下的高超声速飞行器运动模型中,建立了高超声速机动目标状态估计模型,并给出了地面雷达测量模型;其次,考虑到高超目标的策略性机动带来的模型不确定性会超出常规滤波方法的处理能力,基于高超声速飞行器运动模型建立目标机动行为数据集,对其在实际作战过程中可能出现的运动行为进行模拟;然后,将多模型滤波与循环神经网络相结合设计了多滤波器联合估计算法;最后,在多种仿真条件下对本文所提出的算法进行了仿真验证。仿真结果表明,提出的高超声速机动目标状态估计算法可实现对高超声速目标机动变化的快速响应,并且算法的估计结果平滑、精度高,有利于后续预报。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 高超声速机动目标状态估计循环神经网络多模型多滤波器联合估计算法    
Abstract:To achieve real-time and highly accurate estimation of the motion state of a hypersonic maneuvering target, a hypersonic maneuvering target state estimation algorithm based on recurrent neural network was proposed in the study. Firstly, the aerodynamic parameters were introduced into the hypersonic vehicle motion model in the half-speed system as a slow variable, allowing the state estimation model of the hypersonic maneuvering target to be established and the ground radar measurement model to be determined. Then, considering that the model uncertainty caused by the strategic maneuvering of the hypersonic target would exceed the processing ability of the conventional filtering method, the target maneuvering behavior data set was created based on the hypersonic vehicle motion model and the motion behavior that may occur in the actual combat operations was simulated. After that, the multi-filter joint estimation algorithm was designed by combining multi-model filtering with recurrent neural networks. Finally, the proposed algorithm was simulated and verified under different simulation conditions. The simulation results show that the proposed hypersonic maneuvering target state estimation algorithm can successfully achieve rapid response to hypersonic target maneuvering changes, which are smooth, highly precise, and beneficial to subsequent prediction.
Key wordshypersonic maneuvering targets    state estimation    recurrent neural networks    multiple model    multi-filter joint estimation algorithm
收稿日期: 2023-10-18      出版日期: 2024-09-10
ZTFLH:  V 412  
基金资助:国家自然科学基金项目(12302056);中国航天科技集团有限公司上海航天科技创新基金项目(SAST2021-002)
作者简介: 臧红岩(1997—),男,博士。
引用本文:   
臧红岩, 谢晓龙, 徐亚周, 陶业, 高长生. 基于循环神经网络的高超声速机动目标状态估计算法[J]. 空天防御, 2024, 7(4): 88-98.
ZANG Hongyan, XIE Xiaolong, XU Yazhou, TAO Ye, GAO Changsheng. Hypersonic Maneuvering Target State Estimation Algorithm Based on Recurrent Neural Network. Air & Space Defense, 2024, 7(4): 88-98.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2024/V7/I4/88

参考文献
[1] 黄权印, 蔡益朝, 李浩, 唐晓, 王辰洋. 基于改进注意力机制的自适应航迹预测方法[J]. 空天防御, 2024, 7(3): 94-101.
[2] 许飞, 漆斌, 程海涛, 范钦民, 张龙. 基于MHT-IMM的航迹生成算法建模与仿真[J]. 空天防御, 2021, 4(1): 97-102.
[3] 崔乃刚, 蔡李根, 荣思远. 基于有向图切换IMM-CKF高速滑翔目标跟踪算法[J]. 空天防御, 2020, 3(3): 1-8.
[4] 付磊, 张龙, 张丁. 基于IMM-SRCDKF的高速机动目标运动状态估计算法研究[J]. 空天防御, 2020, 3(1): 50-57.
[5] 殷玮, 祁文治. 基于IMM_UKF的自抗扰控制导引律研究[J]. 空天防御, 2018, 1(1): 56-62.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司