Please wait a minute...
空天防御  2024, Vol. 7 Issue (5): 36-44    
0
  专业技术 本期目录 | 过刊浏览 | 高级检索 |
基于非参数模型的雷达辐射源智能识别
任浩浩1, 马寒菲2, 魏裕璐1, 余思慧1, 周云1
1. 电子科技大学 信息与通信工程学院,四川 成都 611731; 2. 上海航天技术研究院, 上海 201109
A Non-Parametric Model-Based Intelligent Recognition Method for Radar Emitters
REN Haohao1, MA Hanfei2, WEI Yulu1, YU Sihui1, ZHOU Yun1
1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; 2. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
全文: PDF(1537 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对现代错综复杂电磁环境中辐射源数量增多、脉冲流密度增大等问题,为实现雷达辐射源高精度智能识别,本文提出一种基于非参数模型的雷达辐射源智能识别方法,该方法主要包含辐射源静态聚类、辐射源类代表点选取和面向数据流的增量分选3个关键步骤。与传统聚类分析方法相比,本文采用Dirichlet过程混合模型的聚类思想,可自适应地完成雷达辐射源类别划分。为在降低数据存储压力的同时最大化保留类分布属性表达,首先,建立基于梯度准则的辐射源类代表点选择策略;其次,针对流式数据增量处理的需求,提出基于标签传播的类别推理方法;最后,通过仿真模拟两种场景的雷达辐射源数据,对比7种聚类算法,验证了本文算法具有较好的识别准确率和鲁棒性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 雷达辐射源识别数据流聚类非参数模型    
Abstract:Given the problem of increasing the number of radar emitters and pulse density in a current complex electromagnetic environment, this study proposed an intelligent recognition algorithm using a non-parametric model to achieve high-precision radar emitters recognition. The proposed method was composed of three vital steps: static clustering of radar emitters, selection of representative points for radar emitter classes, and oriented-data stream incremental recognition. Compared to conventional clustering analysis methods, the proposed method utilized the clustering idea of Dirichlet Process Mixture Models (DPMM), which adaptively realized radar emitters’ class sorting. To reduce the data storage burden while maximizing the preservation of class distribution, a gradient-based representative point selection strategy for emitter classes was established. Besides, to satisfy the requirement of incremental processing of the data stream, a label propagation-based classification inference method was applied to achieve incremental radar emitters recognition. Finally, the proposed algorithm was validated using simulated radar emitters’ data in two scenarios. The evaluation results show that the proposed method is more robust and accurate than the other seven advanced emitters recognition clustering algorithms.
Key wordsradar emitters recognition    data flow clustering    non-parametric model
收稿日期: 2024-07-16      出版日期: 2024-11-23
ZTFLH:  TN 957  
基金资助:国家自然科学基金项目(62201124)
作者简介: 任浩浩(1992—),男,博士,副研究员。
引用本文:   
任浩浩, 马寒菲, 魏裕璐, 余思慧, 周云. 基于非参数模型的雷达辐射源智能识别[J]. 空天防御, 2024, 7(5): 36-44.
REN Haohao, MA Hanfei, WEI Yulu, YU Sihui, ZHOU Yun. A Non-Parametric Model-Based Intelligent Recognition Method for Radar Emitters. Air & Space Defense, 2024, 7(5): 36-44.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2024/V7/I5/36

参考文献
[1] 王冠阳, 李晨, 于英杰, 邓晓波, 芦达, 梁军利, 汪涛. 基于微多普勒特征的直升机目标识别[J]. 空天防御, 2024, 7(2): 63-73.
[2] 邱建杰, 蔡益朝, 李浩, 龙威宇, 韩瑜. 基于不确定噪声分布的多目标航迹关联模型[J]. 空天防御, 2023, 6(3): 104-112.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司