Please wait a minute...
空天防御  2025, Vol. 8 Issue (2): 77-83    
0
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
战场飞行器高生存力突防航路规划研究
王杰民1, 丁云鹏2, 阮开智2,3, 胡进峰4
1. 电子科技大学 信息与通信工程学院,四川 成都 611731; 2. 上海机电工程研究所,上海 201109; 3. 自动目标识别全国重点实验室(上海),上海 201109; 4. 宜宾电子科技大学研究院,四川 宜宾 644005
Battlefield Vehicle High Survivability Surge Route Planning Study
WANG Jiemin1, DING Yunpeng2, RUAN Kaizhi2,3, HU Jinfeng4
1. School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu 611731, Sichuan, China; 2. Shanghai Electro-mechanical Engineering Institute, Shanghai 201109, China; 3. National Key Laboratory of Automatic Target Recognition (ATR), Shanghai 201109, China; 4. Yibin Park of UESTC, Yibin 644005, Sichuan, China
全文: PDF(1750 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 航路规划能够显著提升飞行器的战场生存力,因此需要对三维航路规划展开研究。已有的三维航路规划主要是启发式的稀疏A-Star(Sparse A-Star, SAS)算法,该算法将雷达威胁作为问题模型中的不等式约束,因此只能保证规划的航路满足该雷达威胁的约束,但不一定是雷达威胁最小的最优航路。针对该问题,本文提出改进的SAS算法,该算法将雷达威胁放到启发函数中,并将雷达威胁改进成飞行器被截获概率,确保规划的航路是雷达威胁最小的最优航路,提高了飞行器突防的生存力。仿真结果表明,与已有方法相比:本文算法的航路被截获概率下降约20%,且航路显著缩短。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 隐身突防战场生存力雷达散射截面改进SAS算法航路规划    
Abstract:Since airway planning can significantly improve the battlefield survivability of aircraft, this paper investigated 3D route planning. The existing 3D route planning uses a heuristic sparse A-Star (SAS) method. This method uses the radar threat as an inequality constraint in the problem model, which guarantees that the planned route satisfies the radar threat constraint but fails to be the optimal route that minimises the radar threat. To resolve this problem, this paper proposed an improved SAS algorithm, integrating the radar threat into the heuristic function and enhancing the radar threat into the probability of the vehicle being intercepted, ensuring that the planned route is the optimal route that minimises the radar threat and improves the vehicle's survivability of breaking out of defence. Simulation shows that compared with the existing methods,(1) the probability of interception of the proposed routes decreases by about 20%, and (2) the proposed routes are significantly shorter.
Key wordsstealth penetration    battlefield survivability    radar cross section    improved Sparse A-Star    route planning
收稿日期: 2024-07-23      出版日期: 2025-05-23
ZTFLH:  V 249  
基金资助:国家自然科学基金(62231006);国家重点研发计划(2023YFF0717403);衢州政府资助项目(2023D040,2023D009,2022D009,2022D013,2022D033);四川省科技厅项目(2023YFG0176)
作者简介: 王杰民(2000—),男,硕士研究生。
引用本文:   
王杰民, 丁云鹏, 阮开智, 胡进峰. 战场飞行器高生存力突防航路规划研究[J]. 空天防御, 2025, 8(2): 77-83.
WANG Jiemin, DING Yunpeng, RUAN Kaizhi, HU Jinfeng. Battlefield Vehicle High Survivability Surge Route Planning Study. Air & Space Defense, 2025, 8(2): 77-83.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2025/V8/I2/77

参考文献
[1] 蒋瑞民, 王宣灵, 张明恩, 赵斌. 基于量子遗传算法的反舰导弹航路规划方法[J]. 空天防御, 2023, 6(4): 31-34.
[2] 陈岩, 李艳艳, 杨立波, 倪兴虎, 杨柏胜, 王亚辉. 地海杂波统计特性研究概述[J]. 空天防御, 2020, 3(4): 44-51.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司