Please wait a minute...
空天防御  2025, Vol. 8 Issue (4): 78-84    
0
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
感知驱动控制的无人机拦截碰撞技术
王志博1, 呼卫军1, 马先龙1, 全家乐2, 周皓宇3
1. 西北工业大学 航天学院,陕西 西安 710072; 2. 西安交通大学 航天航空学院,陕西 西安 710049; 3. 杭州智元研究院,浙江 杭州 310012
Perception-Driven-Controlled UAV Interception and Collision Technology
WANG Zhibo1, HU Weijun1, MA Xianlong1, QUAN Jiale2, ZHOU Haoyu3
1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China; 2. School of Aeronautics and Astronautics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China; 3. Zhiyuan Research Institute, Hangzhou 310012, Zhejiang, China
全文: PDF(2604 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 无人机具有机动性高、体积小、易于改装、可低空慢速飞行及适应复杂场景等优势,能高效执行任务并获取信息。本文针对未经许可的无人机在限制区域内运行带来的安全风险及高速、低空、机动特性带来的拦截挑战,聚焦无人机高速精准拦截中的自主决策与轨迹控制问题,提出一种无人机拦截无人机的方法;其核心是构建一个端到端的深度强化学习网络框架,直接从感知信息映射到四旋翼无人机的力和力矩,并利用近端策略优化算法训练神经网络控制器;为优化拦截性能,设计一种基于回报塑性技术的新型奖励函数,引导无人机实现更快速、更平稳、更精确的拦截轨迹。实验结果表明,所提方法能有效实现高速拦截,展现优异的拦截精度;无人机与环境交互过程中表现出强大的自适调整和实时决策能力;基于端到端深度强化学习的无人机拦截方案不仅能高效、精确地完成高速拦截任务,其端到端的特性还能显著降低对无人机动力学模型的依赖。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 无人机端到端深度强化学习拦截策略移动目标    
Abstract:Unmanned Aerial Vehicles (UAVs) possess inherent advantages including high maneuverability, compact size, ease of modification, low-altitude slow flight capability, and adaptability to complex environments. These features enable tasks to be completed efficiently and gather information effectively. However, the same advantages also introduce security risks from unauthorized UAVs operating in restricted areas, which are compounded by the significant interception challenges posed by their high speed, low altitude, and highly maneuverable characteristics. To address these challenges, this study focused on the critical technical problems of autonomous decision-making and trajectory control for high-speed, precise UAV interception. A method for intercepting target UAVs using an interceptor UAV was proposed, whose core approach was an end-to-end deep reinforcement learning (DRL) network framework. This framework utilized the proximal policy optimization (PPO) algorithm to train a neural network controller that directly maps perceptual information to forces and torques controlling the quadrotor UAV. To optimize interception performance, a novel reward function based on reward shaping techniques was designed. This function enabled the interceptor UAV to achieve faster, smoother, and more precise interception trajectories. Experimental results demonstrate that the proposed method allows high-speed interception and achieves superior interception accuracy. Throughout interactions within the environment, the interceptor UAV demonstrates robust adaptive adjustment and real-time decision-making capabilities. This study verifies the effectiveness of the end-to-end DRL-based UAV interception solution. The method efficiently and precisely accomplishes high-speed interception tasks, while its end-to-end nature significantly reduces reliance on precise UAV dynamic models.
Key wordsunmanned aerial vehicle (UAV)    end-to-end    deep reinforcement learning    interception strategy    mobile targets
收稿日期: 2024-12-03      出版日期: 2025-09-09
ZTFLH:  V 279  
基金资助:智元国家重点实验室2024年度开放基金资助项目(ZYL2024011)
作者简介: 王志博(2001—),男,硕士研究生。
引用本文:   
王志博, 呼卫军, 马先龙, 全家乐, 周皓宇. 感知驱动控制的无人机拦截碰撞技术[J]. 空天防御, 2025, 8(4): 78-84.
WANG Zhibo, HU Weijun, MA Xianlong, QUAN Jiale, ZHOU Haoyu. Perception-Driven-Controlled UAV Interception and Collision Technology. Air & Space Defense, 2025, 8(4): 78-84.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2025/V8/I4/78

参考文献
[1] 葛鲁亲, 丁士洲, 姚强, 张诚, 黄雨辰. 无人机抗电磁干扰机理与抗干扰技术研究综述[J]. 空天防御, 2025, 8(4): 51-55.
[2] 周文杰, 付昱龙, 郭相科, 戚玉涛, 张海宾. 基于博弈树与数字平行战场的空战决策方法[J]. 空天防御, 2025, 8(3): 50-58.
[3] 李奕佳, 李嘉诺, 柯良军. 基于强化学习的无人机协作防守策略设计与验证[J]. 空天防御, 2025, 8(3): 73-85.
[4] 孙亮, 王明宇, 周素华, 雷荣强. 重点城市要点防卫小型无人机袭扰作战问题研究[J]. 空天防御, 2025, 8(2): 112-117.
[5] 李克勇, 李楚晨, 蔡云泽. 群对群拦截协同态势感知关键技术[J]. 空天防御, 2025, 8(1): 1-9.
[6] 闫军, 顾村锋, 孔德永, 龚江昆. 基于微多普勒信号的无人机回波检测技术研究[J]. 空天防御, 2025, 8(1): 10-16.
[7] 赵钱, 赵炜, 王航, 朱玉虎, 孔晓俊. 美军有人/无人机协同作战项目介绍及发展趋势研判[J]. 空天防御, 2025, 8(1): 24-30.
[8] 吴桐, 亓统帅, 谢伟朋. 无人机集群反制技术研究[J]. 空天防御, 2025, 8(1): 17-23.
[9] 何通, 韦亚利, 卢青, 毕千. 无人机群协同侦察多点目标路径规划与控制[J]. 空天防御, 2025, 8(1): 31-40.
[10] 李楚晨, 唐善军, 赵冰青. 一种基于无人机探测图像区块信息的弱小目标检测算法[J]. 空天防御, 2025, 8(1): 41-47.
[11] 刘源渊, 周蕾梅, 李昊, 高子义. 面向无人自主空战的编队飞行控制方法综述[J]. 空天防御, 2024, 7(4): 47-58.
[12] 李徐, 董伟, 杜泽弘. 复杂环境约束下的飞行航路规划研究[J]. 空天防御, 2024, 7(4): 99-105.
[13] 焦聪, 许兆胜, 李威, 田道贵, 陈炼, 赵征. 针对分布式集群的空中诱骗对抗方法[J]. 空天防御, 2024, 7(4): 114-120.
[14] 王乐庭, 黄俊松, 麻仕豪, 张晨璐, 戴杰. 水面舰艇反无人机技术发展研究[J]. 空天防御, 2024, 7(4): 121-126.
[15] 张要一, 李宁. 俄乌无人机攻防作战对反无装备发展的启示[J]. 空天防御, 2024, 7(3): 34-39.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司