Please wait a minute...
空天防御  2025, Vol. 8 Issue (4): 9-19    
0
  特约稿件 本期目录 | 过刊浏览 | 高级检索 |
智能飞行器认知诱骗场景生成技术
周宇1, 贾军2, 李豪1, 杜毅晖1, 乔文远1
1. 西安电子科技大学 电子工程学院, 陕西 西安 710075; 2. 上海机电工程研究所, 上海 201109
Scene Generation Technology for Cognitive Deception of Intelligent Flying Vehicles
ZHOU Yu1, JIA Jun2, LI Hao1, DU Yihui1, QIAO Wenyuan1
1. School of Electronic Engineering, Xidian University, Xi’an 710075, Shaanxi, China; 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
全文: PDF(6564 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 智能飞行器在执行目标检测识别、航路在线规划等飞行感知决策任务时,存在目标虚警/漏警、避障失败等影响飞行安全的安全关键场景;另外,数据驱动智能模型算法的状态空间组合爆炸及计算逻辑黑箱特性,导致其难以发现和识别认知诱骗场景。对此,本文将诱骗攻击方法应用于飞行物体安全关键边界场景的生成与测试,对系统的输入添加具有针对性的微小扰动,刻意生成对智能飞行器具有风险挑战性的场景,并不断训练智能飞行器系统以试探其操作极限。该方法揭示了标准测试方法可能无法发现的潜在漏洞,同时对智能飞行器在不同风险场景下开展诱骗测试,以确保其在最具挑战性场景下的安全与性能。这些挑战性场景的生成对于增强自主飞行系统的鲁棒性至关重要,可为应对更广泛的现实挑战场景提供技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 诱骗攻击环境感知诱骗场景测试飞行器鲁棒性测试    
Abstract:When conducting flight perception and decision-making tasks, such as target detection and recognition, and online route planning, intelligent aircraft encounter key scenarios that affect flight safety, including false and missed target alarms, and obstacle avoidance failures. Furthermore, due to the combination explosion of the state space of the data-driven intelligent model algorithm and the black-box characteristics of the computing logic, it is challenging to discover and identify its cognitive deception scenarios. In this study, the spoofing attack method was applied to generate targeted micro-disturbances in the system input, creating scenarios that pose risks and challenges to intelligent aircraft. The intelligent aircraft system was then constantly trained to test its operational limits, thereby evaluating safety-critical boundary scenarios for flying objects. This method revealed potential vulnerabilities that standard testing methods may not be able to detect. Meanwhile, the deceptive tests of intelligent aircraft in different risk scenarios ensured the safety and performance in the most challenging situations. The generation of these complex scenarios is crucial for enhancing the robustness of autonomous flight systems and preparing them for a broader range of real-world challenges.
Key wordsdeception attack    environmental perception    deception scenario testing    robustness testing of aircraft
收稿日期: 2025-04-07      出版日期: 2025-09-09
ZTFLH:  V 557  
基金资助:国家自然科学基金项目(62036006)
作者简介: 周宇(1983—),男,博士,正高级研究员。
引用本文:   
周宇, 贾军, 李豪, 杜毅晖, 乔文远. 智能飞行器认知诱骗场景生成技术[J]. 空天防御, 2025, 8(4): 9-19.
ZHOU Yu, JIA Jun, LI Hao, DU Yihui, QIAO Wenyuan. Scene Generation Technology for Cognitive Deception of Intelligent Flying Vehicles. Air & Space Defense, 2025, 8(4): 9-19.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2025/V8/I4/9

参考文献
[1] 顾晨星, 权冀川, 黄志雄, 刘贵宾. 基于改进AHP-CRITIC-TOPSIS的空中目标威胁评估模型[J]. 空天防御, 2025, 8(4): 68-77.
[2] 焦鹏, 韦茏桓, 周鹏, 张琪. 基于通信行为树的多机空战协同决策建模研究[J]. 空天防御, 2025, 8(3): 40-49.
[3] 江宜航, 骆天溯, 陆营波, 周金鹏, 姚方競. 基于内外场混合数据的仿真模型置信度评估方法研究[J]. 空天防御, 2025, 8(3): 59-65.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司