1. |
|
2. |
K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. in 2002 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 47-50 ( 2002). https://doi.org/10.1109/IEDM.2002.1175776
|
3. |
D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259-288 ( 2001). https://doi.org/10.1109/5.915374
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
H. Xiang, Y.-C. Chien, Y. Shi, K.-W. Ang, Application of 2D materials in hardware security for Internet-of-Things: Progress and perspective. Small Struct. 3(8), 2200060 ( 2022). https://doi.org/10.1002/sstr.202200060
|
10. |
|
11. |
|
12. |
A. Pal, S. Zhang, T. Chavan, K. Agashiwala, C.H. Yeh et al., Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv. Mater. 35(27), 2109894 ( 2022). https://doi.org/10.1002/adma.202109894
|
13. |
|
14. |
|
15. |
M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS 2, WS 2 and phosphorene. Sensors 18(11), 3638 ( 2018). https://doi.org/10.3390/s18113638
|
16. |
V.D. Leyen, Fast-Forward into the Tech Future. (Antwerp, Belgium, 2022)
|
17. |
S.H. Choi, S.J. Yun, Y.S. Won, C.S. Oh, S.M. Kim et al., Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 ( 2022). https://doi.org/10.1038/s41467-022-29182-y
|
18. |
X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two-dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 ( 2021). https://doi.org/10.1038/s41467-021-26230-x
|
19. |
P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 ( 2018). https://doi.org/10.1038/s41467-018-03388-5
|
20. |
S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 ( 2017). https://doi.org/10.1038/ncomms14948
|
21. |
J.-Y. Kim, X. Ju, K.-W. Ang, D. Chi, Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17(3), 1831-1844 ( 2023). https://doi.org/10.1021/acsnano.2c10737
|
22. |
R. Campos, G. Machado, M.F. Cerqueira, J. Borme, P. Alpuim, Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron. Eng. 189, 85-90 ( 2018). https://doi.org/10.1016/j.mee.2017.12.015
|
23. |
|
24. |
|
25. |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666-669 ( 2004). https://doi.org/10.1126/science.1102896
|
26. |
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898-2926 ( 2013). https://doi.org/10.1021/nn400280c
|
27. |
L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers et al., Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 ( 2015). https://doi.org/10.1126/sciadv.1500222
|
28. |
|
29. |
X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M.B. Nardellil et al., Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles. Phys. Rev. B 87(11), 115418 ( 2013). https://doi.org/10.1103/PhysRevB.87.115418
|
30. |
E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, M. Houssa et al., Getting through the nature of silicene: An sp 2-sp 3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117(32), 16719-16724 ( 2013). https://doi.org/10.1021/jp405642g
|
31. |
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227-231 ( 2015). https://doi.org/10.1038/nnano.2014.325
|
32. |
Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu et al., Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15(5), 3030-3034 ( 2015). https://doi.org/10.1021/nl504957p
|
33. |
|
34. |
Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230-235 ( 2019). https://doi.org/10.1038/s41928-019-0256-8
|
35. |
|
36. |
M. Qian, Y. Pan, F. Liu, M. Wang, H. Shen et al., Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 26(20), 3275-3281 ( 2014). https://doi.org/10.1002/adma.201306028
|
37. |
K. Qian, R.Y. Tay, V.C. Nguyen, J. Wang, G. Cai et al., Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26(13), 2176-2184 ( 2016). https://doi.org/10.1002/adfm.201504771
|
38. |
S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203-206 ( 2020). https://doi.org/10.1038/s41565-019-0623-7
|
39. |
|
40. |
H. Tian, X. Wang, H. Zhao, W. Mi, Y. Yang et al., A graphene-based filament transistor with sub-10 mVdec -1 subthreshold swing. Adv. Electron. Mater. 4(4), 1700608 ( 2018). https://doi.org/10.1002/aelm.201700608
|
41. |
M. Lanza, Q. Smets, C. Huyghebaert, L.-J. Li, Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 ( 2020). https://doi.org/10.1038/s41467-020-19053-9
|
42. |
G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68(14), 1514-1521 ( 2023). https://doi.org/10.1016/j.scib.2023.06.037
|
43. |
P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS 2 monolayer on Au(111). ACS Nano 14(4), 5036-5045 ( 2020). https://doi.org/10.1021/acsnano.0c01478
|
44. |
J.-H. Park, A.-Y. Lu, P.-C. Shen, B.G. Shin, H. Wang et al., Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5(6), 2000720 ( 2021). https://doi.org/10.1002/smtd.202000720
|
45. |
J. Mun, H. Park, J. Park, D. Joung, S.-K. Lee et al., High-mobility MoS 2 directly grown on polymer substrate with kinetics-controlled metal-organic chemical vapor deposition. ACS Appl. Electron. Mater. 1(4), 608-616 ( 2019). https://doi.org/10.1021/acsaelm.9b00078
|
46. |
J. Zhu, J.-H. Park, S.A. Vitale, W. Ge, G.S. Jung et al., Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456-463 ( 2023). https://doi.org/10.1038/s41565-023-01375-6
|
47. |
J. Mun, Y. Kim, I.-S. Kang, S.K. Lim, S.J. Lee et al., Low-temperature growth of layered molybdenum disulphide with controlled clusters. Sci. Rep. 6, 21854 ( 2016). https://doi.org/10.1038/srep21854
|
48. |
|
49. |
J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao et al., Chemical vapor deposition of high-quality large-sized MoS 2 crystals on silicon dioxide substrates. Adv. Sci. 3(8), 1500033 ( 2016). https://doi.org/10.1002/advs.201600033
|
50. |
I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822-8832 ( 2015). https://doi.org/10.1021/acsnano.5b02019
|
51. |
W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS 2. J. Am. Chem. Soc. 137(50), 15632-15635 ( 2015). https://doi.org/10.1021/jacs.5b10519
|
52. |
H. Yu, M. Liao, W. Zhao, G. Liu, X.J. Zhou et al., Wafer-scale growth and transfer of highly-oriented monolayer MoS 2 continuous films. ACS Nano 11(12), 12001-12007 ( 2017). https://doi.org/10.1021/acsnano.7b03819
|
53. |
|
54. |
|
55. |
T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201-1207 ( 2021). https://doi.org/10.1038/s41565-021-00963-8
|
56. |
|
57. |
|
58. |
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-660 ( 2015). https://doi.org/10.1038/nature14417
|
59. |
S. Hwangbo, L. Hu, A.T. Hoang, J.Y. Choi, J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS 2 transistor. Nat. Nanotechnol. 17, 500-506 ( 2022). https://doi.org/10.1038/s41565-022-01102-7
|
60. |
M.-L. Shi, L. Chen, T.-B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13(35), 1603157 ( 2017). https://doi.org/10.1002/smll.201603157
|
61. |
|
62. |
|
63. |
L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675-684 ( 2011). https://doi.org/10.1007/s12274-011-0123-z
|
64. |
|
65. |
|
66. |
|
67. |
S.A. Iyengar, S. Bhattacharyya, S. Roy, N.R. Glavin, A.K. Roy et al., A researcher’s perspective on unconventional lab-to-fab for 2D semiconductor devices. ACS Nano 17(14), 12955-12970 ( 2023). https://doi.org/10.1021/acsnano.3c01927
|
68. |
|
69. |
|
70. |
F. Wu, J. Ren, Y. Yang, Z. Yan, H. Tian et al., A 10 nm short channel MoS 2 transistor without the resolution requirement of photolithography. Adv. Electron. Mater. 7(12), 2100543 ( 2021). https://doi.org/10.1002/aelm.202100543
|
71. |
K.A. Patel, R.W. Grady, K.K.H. Smithe, E. Pop, R. Sordan, Ultra-scaled MoS 2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 ( 2020). https://doi.org/10.1088/2053-1583/ab4ef0
|
72. |
R. Wu, Q. Tao, J. Li, W. Li, Y. Chen et al., Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497-504 ( 2022). https://doi.org/10.1038/s41928-022-00800-3
|
73. |
|
74. |
J. Jiang, M.-H. Doan, L. Sun, H. Kim, H. Yu et al., Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7(4), 1902964 ( 2020). https://doi.org/10.1002/advs.201902964
|
75. |
|
76. |
|
77. |
|
78. |
Y.-Y. Chung, B.-J. Chou, C.-F. Hsu, W.-S. Yun, M.-Y. Li et al., First demonstration of GAA Monolayer-MoS 2 nanosheet nFET with 410μA/μm I D at 1V V D at 40nm gate length. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 34.5.1-34.5.4 ( 2022). https://doi.org/10.1109/IEDM45625.2022.10019563
|
79. |
X. Xiong, A. Tong, X. Wang, S. Liu, X. Li et al., Demonstration of vertically-stacked CVD monolayer channels: MoS 2 nanosheets GAA-FET with I on > 700 μA/μm and MoS 2/WSe 2 CFET. in 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1-7.5.4 ( 2021). https://doi.org/10.1109/IEDM19574.2021.9720533
|
80. |
C.J. Dorow, A. Penumatcha, A. Kitamura, C. Rogan, K.P.O’ Brien et al., Gate length scaling beyond Si:Mono-layer 2D channel FETs robust to short channel effects. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1-7.5.4 ( 2022). https://doi.org/10.1109/IEDM45625.2022.10019524
|
81. |
|
82. |
|
83. |
|
84. |
|
85. |
S. Fukamachi, P. Solis-Fernandez, K. Kawahara, D. Tanaka, T. Otake et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126-136 ( 2023). https://doi.org/10.1038/s41928-022-00911-x
|
86. |
T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98-108 ( 2021). https://doi.org/10.1038/s41928-020-00529-x
|
87. |
|
88. |
|
89. |
|
90. |
|
91. |
S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong et al., HfO 2 on MoS 2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 7(11), 10354-10361 ( 2013). https://doi.org/10.1021/nn404775u
|
92. |
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-kappa gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2(12), 563-571 ( 2019). https://doi.org/10.1038/s41928-019-0334-y
|
93. |
J. Wang, S. Li, X. Zou, J. Ho, L. Liao et al., Integration of high- k oxide on MoS 2 by using ozone pretreatment for high-performance MoS 2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 11(44), 5932-5938 ( 2015). https://doi.org/10.1002/smll.201501260
|
94. |
X. Wang, T.-B. Zhang, W. Yang, H. Zhu, L. Chen et al., Improved integration of ultra-thin high-k dielectrics in few-layer MoS 2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 110(5), 053110 ( 2017). https://doi.org/10.1063/1.4975627
|
95. |
|
96. |
D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der Waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33(27), 2301704 ( 2023). https://doi.org/10.1002/adfm.202301704
|
97. |
|
98. |
|
99. |
|
100. |
S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS 2 transistors with scandium contacts. Nano Lett. 13(1), 100-105 ( 2013). https://doi.org/10.1021/nl303583v
|
101. |
|
102. |
|
103. |
Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe 2 driven by electrostatic doping. Nature 550, 487-491 ( 2017). https://doi.org/10.1038/nature24043
|
104. |
J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang et al., Argon plasma induced phase transition in monolayer MoS 2. J. Am. Chem. Soc. 139(30), 10216-10219 ( 2017). https://doi.org/10.1021/jacs.7b05765
|
105. |
|
106. |
G. Kwon, Y.-H. Choi, H. Lee, H.-S. Kim, J. Jeong et al., Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241-247 ( 2022). https://doi.org/10.1038/s41928-022-00746-6
|
107. |
Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696-700 ( 2018). https://doi.org/10.1038/s41586-018-0129-8
|
108. |
|
109. |
|
110. |
|
111. |
|
112. |
M.H.D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392-6399 ( 2016). https://doi.org/10.1021/acsnano.6b02879
|
113. |
|
114. |
|
115. |
Y. Zhao, Y. Song, Z. Hu, W. Wang, Z. Chang et al., Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 ( 2022). https://doi.org/10.1038/s41467-022-31887-z
|
116. |
|
117. |
|
118. |
L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair et al., Design, modeling, and fabrication of chemical vapor deposition grown MoS 2 circuits with e-Mode FETs for large-area electronics. Nano Lett. 16(10), 6349-6356 ( 2016). https://doi.org/10.1021/acs.nanolett.6b02739
|
119. |
A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer et al., Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 7(45), 19099-19109 ( 2015). https://doi.org/10.1039/c5nr06038a
|
120. |
S. Fernandez, A. Molinero, D. Sanz, J.P. Gonzalez, M. Cruz et al., Graphene-based contacts for optoelectronic devices. Micromachines 11(10), 919 ( 2020). https://doi.org/10.3390/mi11100919
|
121. |
|
122. |
C.S. Premachandran, S. Choi, S. Cimino, T.-Q. Thuy, L. Burrell et al., Reliability challenges for 2.5D/3D integration: An overview. in 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 5B.4-1-5B.4-5 ( 2018). https://doi.org/10.1109/IRPS.2018.8353609
|
123. |
M. Koyanagi, T. Fukushima, T. Tanaka, Three-dimensional integration technology and integrated systems. in 2009 Asia and South Pacific Design Automation Conference, Yokohama, Japan,409-415 ( 2009). https://doi.org/10.1109/ASPDAC.2009.4796515
|
124. |
|
125. |
Z. Hu, Q. Li, B. Lei, Q. Zhou, D. Xiang et al., Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. Int. Ed. 56(31), 9131-9135 ( 2017). https://doi.org/10.1002/anie.201705012
|
126. |
T. Kawauchi, J. Kumaki, E. Yashima, Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128(32), 10560-10567 ( 2006). https://doi.org/10.1021/ja063252u
|
127. |
J. Ma, K.-Y. Choi, S.H. Kim, H. Lee, G. Yoo et al., All polymer encapsulated, highly-sensitive MoS 2 phototransistors on flexible PAR substrate. Appl. Phys. Lett. 113(1), 013102 ( 2018). https://doi.org/10.1063/1.5036556
|
128. |
|
129. |
K. Alexandrou, N. Petrone, J. Hone, I. Kymissis, Encapsulated graphene field-effect transistors for air stable operation. Appl. Phys. Lett. 106(11), 113104 ( 2015). https://doi.org/10.1063/1.4915513
|
130. |
J. Jia, S.K. Jang, S. Lai, J. Xu, Y.J. Choi et al., Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9(9), 8729-8736 ( 2015). https://doi.org/10.1021/acsnano.5b04265
|
131. |
|
132. |
W.J. Woo, I.K. Oh, B.E. Park, Y. Kim, J. Park et al., Bi-layer high- k dielectrics of Al 2O 3/ZrO 2 to reduce damage to MoS 2 channel layers during atomic layer deposition. 2D Mater. 6, 015019 ( 2019). https://doi.org/10.1088/2053-1583/aaef1e
|
133. |
Y. Liu, X. Wang, S.K. Ghosh, M. Zou, H. Zhou et al., Atomic layer deposition of lithium zirconium oxides for the improved performance of lithium-ion batteries. Dalton Trans. 51(7), 2737-2749 ( 2022). https://doi.org/10.1039/d1dt03600a
|
134. |
M.Z. Ansari, P. Janicek, Y.J. Park, S. NamGung, B.Y. Cho et al., Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor. Appl. Surf. Sci. 620, 156834 ( 2023). https://doi.org/10.1016/j.apsusc.2023.156834
|
135. |
N. Li, Z. Wei, J. Zhao, Q. Wang, C. Shen et al., Atomic layer deposition of Al 2O 3 directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 6(10), 1802055 ( 2019). https://doi.org/10.1002/admi.201802055
|
136. |
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS 2. Nano Lett. 10(4), 1271-1275 ( 2010). https://doi.org/10.1021/nl903868w
|
137. |
G. Nazir, A. Rehman, S.-J. Park, Energy-efficient tunneling field-effect transistors for low-power device applications: Challenges and opportunities. ACS Appl. Mater. Interfaces 12(42), 47127-47163 ( 2020). https://doi.org/10.1021/acsami.0c10213
|
138. |
C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials. Chem. Soc. Rev. 47(13), 4860-4908 ( 2018). https://doi.org/10.1039/c8cs00417j
|
139. |
M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 ( 2019). https://doi.org/10.1002/adfm.201803807
|
140. |
Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang et al., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. npj 2D Mater. Appl. 3, 24 ( 2019). https://doi.org/10.1038/s41699-019-0106-6
|
141. |
|
142. |
R. Ma, Q. Chen, W. Zhang, F. Lu, C. Wang et al., A dual-polarity graphene NEMS switch ESD protection structure. IEEE Electron Device Lett. 37(5), 674-676 ( 2016). https://doi.org/10.1109/LED.2016.2544343
|
143. |
H. Feng, G. Chen, R. Zhan, Q. Wu, X. Guan et al., A mixed-mode ESD protection circuit simulation-design methodology. IEEE J. Solid-State Circuits 38(6), 995-1006 ( 2003). https://doi.org/10.1109/JSSC.2003.811978
|
144. |
|
145. |
S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S.P. Wong et al., Layered semiconducting 2D materials for future transistor applications. Small Struct. 2(5), 2000103 ( 2021). https://doi.org/10.1002/sstr.202000103
|
146. |
Z. Wang, W. Zhu, Tunable band alignments in 2D ferroelectric alpha-In 2Se 3 based van der Waals heterostructures. ACS Appl. Electron. Mater. 3(11), 5114-5123 ( 2021). https://doi.org/10.1021/acsaelm.1c00855
|
147. |
A. Srivastava, M. Dubey, GaAs digital integrated circuits-a review from silicon point of view for designing ultra-fast VLSI circuits. in Proceedings of the 32nd Midwest Symposium on Circuits and Systems Champaign, IL, USA, 2, 1250-1254 ( 1989). https://doi.org/10.1109/mwscas.1989.102083
|
148. |
H. Wang, L. Yu, Y.-H. Lee, W. Fang, A. Hsu et al., Large-scale 2D electronics based on single-layer MoS 2 grown by chemical vapor deposition. in 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 4.6.1-4.6.4 ( 2012). https://doi.org/10.1109/IEDM.2012.6478980
|
149. |
P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS 2 and p-WSe 2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7(40), 22333-22340 ( 2015). https://doi.org/10.1021/acsami.5b06027
|
150. |
H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS 2 transistors. Nano Lett. 12(9), 4674-4680 ( 2012). https://doi.org/10.1021/nl302015v
|
151. |
Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao et al., Memory materials and devices: from concept to application. Infomat 2(2), 261-290 ( 2020). https://doi.org/10.1002/inf2.12077
|
152. |
J. Li, J. Li, Y. Ding, C. Liu, X. Hou et al., Highly area-efficient low-power SRAM cell with 2 transistors and 2 resistors. in 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 23.3.1-23.3.4 ( 2019). https://doi.org/10.1109/IEDM19573.2019.8993520
|
153. |
X. Wang, X. Chen, J. Ma, S. Gou, X. Guo et al., Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34(48), 2202472 ( 2022). https://doi.org/10.1002/adma.202202472
|
154. |
|
155. |
S.-L. Li, H. Miyazaki, A. Kumatani, A. Kanda, K. Tsukagoshi, Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 10(7), 2357-2362 ( 2010). https://doi.org/10.1021/nl100031x
|
156. |
S.-L. Li, H. Miyazaki, M.V. Lee, C. Liu, A. Kanda et al., Complementary-like graphene logic gates controlled by electrostatic doping. Small 7(11), 1552-1556 ( 2011). https://doi.org/10.1002/smll.201100318
|
157. |
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033-4041 ( 2014). https://doi.org/10.1021/nn501226z
|
158. |
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS 2. ACS Nano 5(12), 9934-9938 ( 2011). https://doi.org/10.1021/nn203715c
|
159. |
S. Das, M. Dubey, A. Roelofs, High gain, low noise, fully complementary logic inverter based on bi-layer WSe 2 field effect transistors. Appl. Phys. Lett. 105(8), 083511 ( 2014). https://doi.org/10.1063/1.4894426
|
160. |
J. Pu, K. Funahashi, C.-H. Chen, M.-Y. Li, L.-J. Li et al., Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28(21), 4111-4119 ( 2016). https://doi.org/10.1002/adma.201503872
|
161. |
Z. Bian, J. Miao, T. Zhang, H. Chen, Q. Zhu et al., Carrier modulation in 2D transistors by inserting interfacial dielectric layer for area-efficient computation. Small 19(26), 2206791 ( 2023). https://doi.org/10.1002/smll.202206791
|
162. |
H. Liu, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding et al., Atomic layer deposited 2D MoS 2 atomic crystals: from material to circuit. Nano Res. 13(6), 1644-1650 ( 2020). https://doi.org/10.1007/s12274-020-2787-8
|
163. |
J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS 2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 ( 2021). https://doi.org/10.1002/adma.202101036
|
164. |
H. Son, H. Choi, J. Jeon, Y.J. Kim, S. Choi et al., Complementary driving between 2D heterostructures and surface functionalization for surpassing binary logic devices. ACS Appl. Mater. Interfaces 13(7), 8692-8699 ( 2021). https://doi.org/10.1021/acsami.0c17739
|
165. |
L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin et al., Graphene/MoS 2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14(6), 3055-3063 ( 2014). https://doi.org/10.1021/nl404795z
|
166. |
|
167. |
X. Xiong, S. Liu, H. Liu, Y. Chen, X. Shi et al., Top-gate CVD WSe 2 pFETs with record-high I d-594 µA/µm, G m-244 µS/µm and WSe 2/MoS 2 CFET based half-adder circuit using monolithic 3D integration. in 2022 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 20.6.1-20.6.4 ( 2022). https://doi.org/10.1109/IEDM45625.2022.10019476
|
168. |
S.-J. Han, A.V. Garcia, S. Oida, K.A. Jenkins, W. Haensch, Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 ( 2014). https://doi.org/10.1038/ncomms4086
|
169. |
S.F. Chowdhury, M.N. Yogeesh, S.K. Banerjee, D. Akinwande, Black phosphorous thin-film transistor and RF circuit applications. IEEE Electron Device Lett. 37(4), 449-451 ( 2016). https://doi.org/10.1109/led.2016.2536102
|
170. |
|
171. |
S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37(4), 512-515 ( 2016). https://doi.org/10.1109/led.2016.2535484
|
172. |
S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee et al., Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11, 3566 ( 2020). https://doi.org/10.1038/s41467-020-17297-z
|
173. |
S. Ma, Y. Wang, X. Chen, T. Wu, X. Wang et al., Analog integrated circuits based on wafer-level two-dimensional MoS 2 materials with physical and SPICE model. IEEE Access 8, 197287-197299 ( 2020). https://doi.org/10.1109/access.2020.3034321
|
174. |
N.O. Adesina, A. Srivastava, A. Ullah Khan, J. Xu, An ultra-low power MoS 2 tunnel field effect transistor PLL design for IoT applications. in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1-6 ( 2021). https://doi.org/10.1109/IEMTRONICS52119.2021.9422641
|
175. |
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9-10), 351-355 ( 2008). https://doi.org/10.1016/j.ssc.2008.02.024
|
176. |
|
177. |
|
178. |
Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74-78 ( 2011). https://doi.org/10.1038/nature09979
|
179. |
Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu et al., State-of-the-art graphene high-frequency electronics. Nano Lett. 12(6), 3062-3067 ( 2012). https://doi.org/10.1021/nl300904k
|
180. |
|
181. |
S. Das, W. Zhang, L.R. Thoutam, Z. Xiao, A. Hoffmann et al., A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor. IEEE Electron Device Lett. 36(6), 621-623 ( 2015). https://doi.org/10.1109/led.2015.2421948
|
182. |
|
183. |
H.-Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne et al., Large-area monolayer MoS 2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28(9), 1818-1823 ( 2016). https://doi.org/10.1002/adma.201504309
|
184. |
|
185. |
|
186. |
|
187. |
B.J. Shastri, A.N. Tait, T.F. de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102-114 ( 2021). https://doi.org/10.1038/s41566-020-00754-y
|
188. |
J.-A. Carballo, W.-T. J. Chan, P.A. Gargini, A.B. Kahng, S. Nath, ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap. in 2014 IEEE 32nd International Conference on Computer Design (ICCD), Seoul, Korea (South), 139-146 ( 2014). https://doi.org/10.1109/ICCD.2014.6974673
|
189. |
H.-C. Lin, T. Chou, C.-C. Chung, C.-J. Tsen, B.-W. Huang et al., RF performance of stacked Si nanosheet nFETs. IEEE Trans. Electron Devices 68(10), 5277-5283 ( 2021). https://doi.org/10.1109/ted.2021.3106287
|
190. |
|
191. |
N. Bourahla, B. Hadri, A. Bourahla, Impact of channel doping concentration on the performance characteristics and the reliability of ultra-thin double gate DG-FinFET compared with nano-single gate FD-SOI-MOSFET by using TCAD-Silvaco tool. SILICON 14, 3477-3491 ( 2022). https://doi.org/10.1007/s12633-021-01121-4
|
192. |
|
193. |
|
194. |
P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 122(6), 6514-6613 ( 2022). https://doi.org/10.1021/acs.chemrev.1c00735
|
195. |
L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma et al., Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37-44 ( 2023). https://doi.org/10.1038/s41928-022-00881-0
|
196. |
Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-Scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18(20), 2107650 ( 2022). https://doi.org/10.1002/smll.202107650
|
197. |
M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS 2/WSe 2. Adv. Electron. Mater. 9(2), 2200722 ( 2023). https://doi.org/10.1002/aelm.202200722
|
198. |
A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495-501 ( 2021). https://doi.org/10.1038/s41928-021-00598-6
|
199. |
Z. Li, D. Xie, R. Dai, J. Xu, Y. Sun et al., High-performance heterogeneous complementary inverters based on n-channel MoS 2 and p-channel SWCNT transistors. Nano Res. 10, 276-283 ( 2017). https://doi.org/10.1007/s12274-016-1286-4
|
200. |
H. Mertens, R. Ritzenthaler, V. Pena, G. Santoro, K. Kenis et al., Vertically stacked gate-all-around Si nanowire transistors: Key process optimizations and ring oscillator demonstration. in 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 37.4.1-37.4.4 ( 2017). https://doi.org/10.1109/IEDM.2017.8268511
|
201. |
C.J. Estrada, Z. Ma, M. Chan, Complementary two-dimensional (2-D) FET technology with MoS 2/hBN/graphene stack. IEEE Electron Device Lett. 42(12), 1890-1893 ( 2021). https://doi.org/10.1109/LED.2021.3124823
|
202. |
R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), 2202590 ( 2022). https://doi.org/10.1002/smll.202202590
|
203. |
T. Dai, C. Chen, L. Huang, J. Jiang, L.-M. Peng et al., Ultrasensitive magnetic sensors enabled by heterogeneous integration of graphene hall elements and silicon processing circuits. ACS Nano 14(12), 17606-17614 ( 2020). https://doi.org/10.1021/acsnano.0c08435
|
204. |
S.K. Hong, C.S. Kim, W.S. Hwang, B.J. Cho, Hybrid integration of graphene analog and silicon complementary metal-oxide-semiconductor digital circuits. ACS Nano 10(7), 7142-7146 ( 2016). https://doi.org/10.1021/acsnano.6b03382
|
205. |
L. Xu, W. Cai, Y. Jia, R. Xing, T. Han et al., Graphene-silicon hybrid MOSFET integrated circuits for high-linearity analog amplification. IEEE Electron Device Lett. 43(11), 1886-1889 ( 2022). https://doi.org/10.1109/led.2022.3204950
|
206. |
|
207. |
Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 ( 2022). https://doi.org/10.1038/s41467-022-33053-x
|
208. |
A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 ( 2022). https://doi.org/10.1038/s41467-022-31148-z
|
209. |
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 11, 366-371 ( 2017). https://doi.org/10.1038/nphoton.2017.75
|
210. |
C.-C. Yang, K.-C. Chiu, C.-T. Chou, C.-N. Liao, M.-H. Chuang et al., Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D +IC. in 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 1-2 ( 2016). https://doi.org/10.1109/VLSIT.2016.7573448
|
211. |
H. Hinton, H. Jang, W. Wu, M.-H. Lee, M. Seol et al., A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters. in 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 1-3 ( 2022). https://doi.org/10.1109/ISSCC42614.2022.9731685
|
212. |
W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231-1236 ( 2021). https://doi.org/10.1038/s41565-021-00966-5
|
213. |
|
214. |
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS 2. Nat. Nanotechnol. 8(7), 497-501 ( 2013). https://doi.org/10.1038/nnano.2013.100
|
215. |
|
216. |
|
217. |
Y. Liu, J. Sun, L. Tong, Y. Li, T. Deng, High-performance one-dimensional MOSFET array photodetectors in the 0.8-μm standard CMOS process. Opt. Express 30(24), 43706-43717 ( 2022). https://doi.org/10.1364/oe.475687
|
218. |
M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74-78 ( 2017). https://doi.org/10.1038/nature22994
|
219. |
S.R. Cho, D.-H. Kim, M. Jeon, R. Pragya, M. Gyeon et al., Overlaying monolayer metal-organic framework on PtSe 2-based gas sensor for tuning selectivity. Adv. Funct. Mater. 32(47), 2207265 ( 2022). https://doi.org/10.1002/adfm.202207265
|
220. |
|
221. |
|
222. |
C.-Y. You, B.-F. Hu, B.-R. Xu, Z.-Y. Zhang, B.-M. Wu et al., Foldable-circuit-enabled miniaturized multifunctional sensor for smart digital dust. Chip 1(4), 100034 ( 2022). https://doi.org/10.1016/j.chip.2022.100034
|
223. |
|
224. |
|
225. |
A. Harzheim, F. Koenemann, B. Gotsmann, H. van der Zant, P. Gehring, Single-material graphene thermocouples. Adv. Funct. Mater. 30(22), 2000574 ( 2020). https://doi.org/10.1002/adfm.202000574
|
226. |
A.M.H. Kwan, Y. Guan, X. Liu, K.J. Chen, A highly linear integrated temperature sensor on a GaN smart power IC platform. IEEE Trans. Electron Devices 61(8), 2970-2976 ( 2014). https://doi.org/10.1109/ted.2014.2327386
|
227. |
L. Viti, E. Riccardi, H.E. Beere, D.A. Ritchie, M.S. Vitiello, Real-time measure of the lattice temperature of a semiconductor heterostructure laser via an on-chip integrated graphene thermometer. ACS Nano 17(6), 6103-6112 ( 2023). https://doi.org/10.1021/acsnano.3c01208
|
228. |
A. Daus, M. Jaikissoon, A.I. Khan, A. Kumar, R.W. Grady et al., Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 22(15), 6135-6140 ( 2022). https://doi.org/10.1021/acs.nanolett.2c01344
|
229. |
Y.J. Park, B.K. Sharma, S.M. Shinde, M.S. Kim, B. Jang et al., All MoS 2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13(3), 3023-3030 ( 2019). https://doi.org/10.1021/acsnano.8b07995
|
230. |
J. Jang, H. Kim, S. Ji, H.J. Kim, M.S. Kang et al., Mechanoluminescent, air-dielectric MoS 2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 20(1), 66-74 ( 2020). https://doi.org/10.1021/acs.nanolett.9b02978
|
231. |
M. Siskins, M. Lee, D. Wehenkel, R. van Rijn, T.W. de Jong et al., Sensitive capacitive pressure sensors based on graphene membrane arrays. Microsyst. Nanoeng. 6, 102 ( 2020). https://doi.org/10.1038/s41378-020-00212-3
|
232. |
S. Zeng, C. Tang, H. Hong, Y. Fang, Y. Li et al., A novel high-temperature pressure sensor based on graphene coated by Si 3N 4. IEEE Sens. J. 23(3), 2008-2013 ( 2023). https://doi.org/10.1109/jsen.2022.3232626
|
233. |
Z. Zhu, J. Wang, C. Wu, X. Chen, X. Liu et al., A wide range and high repeatability MEMS pressure sensor based on graphene. IEEE Sens. J. 22(18), 17737-17745 ( 2022). https://doi.org/10.1109/jsen.2022.3195231
|
234. |
|
235. |
J. Zhao, G. Wang, R. Yang, X. Lu, M. Cheng et al., Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano 9(2), 1622-1629 ( 2015). https://doi.org/10.1021/nn506341u
|
236. |
Y. Zhang, Q. Lu, J. He, Z. Huo, R. Zhou et al., Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 14, 1252 ( 2023). https://doi.org/10.1038/s41467-023-36885-3
|
237. |
T. Zhao, J. Guo, T. Li, Z. Wang, M. Peng et al., Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650-1671 ( 2023). https://doi.org/10.1039/d2cs00657j
|
238. |
S. Hong, N. Zagni, S. Choo, N. Liu, S. Baek et al., Highly sensitive active pixel image sensor array driven by large-area bilayer MoS 2 transistor circuitry. Nat. Commun. 12, 3559 ( 2021). https://doi.org/10.1038/s41467-021-23711-x
|
239. |
S. Ma, T. Wu, X. Chen, Y. Wang, J. Ma et al., A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8(31), eabn9328 ( 2022). https://doi.org/10.1126/sciadv.abn9328
|
240. |
W. Yu, Z. Dong, H. Mu, G. Ren, X. He et al., Wafer-scale synthesis of 2D Dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 16(8), 12922-12929 ( 2022). https://doi.org/10.1021/acsnano.2c05278
|
241. |
H. Park, A. Sen, M. Kaniselvan, A. AlMutairi, A. Bala et al., A wafer-scale nanoporous 2D active pixel image sensor matrix with high uniformity, high sensitivity, and rapid switching. Adv. Mater. 35(14), 2210715 ( 2023). https://doi.org/10.1002/adma.202210715
|
242. |
Z. Li, B. Xu, D. Liang, A. Pan, Polarization-dependent optical properties and optoelectronic devices of 2D materials. Research 2020, 5464258 (2020). https://doi.org/10.34133/2020/5464258
|
243. |
Y. Li, Y. Zhang, Y. Wang, J. Sun, Q. You et al., Polarization-sensitive optoelectronic synapse based on 3D graphene/MoS 2 heterostructure. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202302288
|
244. |
C.N. Saggau, F. Gabler, D.D. Karnaushenko, D. Karnaushenko, L. Ma et al., Wafer-scale high-quality microtubular devices fabricated via dry-etching for optical and microelectronic applications. Adv. Mater. 32(37), 2003252 ( 2020). https://doi.org/10.1002/adma.202003252
|
245. |
|
246. |
|
247. |
J. Sun, M. Muruganathan, H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2(4), 1501518 ( 2016). https://doi.org/10.1126/sciadv.1501518
|
248. |
|
249. |
H. Li, S. Liu, X. Li, R. Hao, X. Wang et al., All-Solid, ultra-micro, and ultrasensitive pH sensor by monolayer MoS 2-based array field-effect transistors. ACS Appl. Nano Mater. 4(9), 8950-8957 ( 2021). https://doi.org/10.1021/acsanm.1c01568
|
250. |
T. Deng, Z. Zhang, Y. Zhang, Y. Li, Z. Liu, Three-dimensional graphene FETs for pH detection. in 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 68-72 ( 2021). https://doi.org/10.1109/NEMS51815.2021.9451321
|
251. |
|
252. |
M. Park, T.S. Seo, An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosens. Bioelectron. 126, 405-411 ( 2019). https://doi.org/10.1016/j.bios.2018.11.010
|
253. |
A. Chalupniak, A. Merkoci, Graphene oxide-poly(dinnethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces 9(51), 44766-44775 ( 2017). https://doi.org/10.1021/acsami.7b12368
|
254. |
M. Xue, C. Mackin, W. Weng, J. Zhu, Y. Luo et al., Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 ( 2022). https://doi.org/10.1038/s41467-022-32749-4
|
255. |
A. Bolotsky, D. Butler, C. Dong, K. Gerace, N.R. Glayin et al., Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781-9810 ( 2019). https://doi.org/10.1021/acsnano.9b03632
|
256. |
D.K. Ban, Y. Liu, Z. Wang, S. Ramachandran, N. Sarkar et al., Direct DNA methylation profiling with an electric biosensor. ACS Nano 14(6), 6743-6751 ( 2020). https://doi.org/10.1021/acsnano.9b10085
|
257. |
|
258. |
A. Purwidyantri, S. Azinheiro, A. Garcia Roldan, T. Jaegerova, A. Vilaca et al., Integrated approach from sample-to-answer for grapevine varietal identification on a portable graphene sensor chip. ACS Sens. 8(2), 640-654 ( 2023). https://doi.org/10.1021/acssensors.2c02090
|
259. |
C. Zheng, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Interfaces 7(31), 16953-16959 ( 2015). https://doi.org/10.1021/acsami.5b03941
|
260. |
L. Xu, S. Ramadan, B.G. Rosa, Y. Zhang, T. Yin et al., On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. Sens. Diagn. 1(4), 719-730 ( 2022). https://doi.org/10.1039/D2SD00076H
|
261. |
J. Kim, M.-S. Chae, S.M. Lee, D. Jeong, B.C. Lee et al., Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 6, 31276 ( 2016). https://doi.org/10.1038/srep31276
|
262. |
C. Wang, Y. Zhang, W. Tang, C. Wang, Y. Han et al., Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta 1178, 338791 2021). https://doi.org/10.1016/j.aca.2021.338791
|
263. |
Y. Wang, T.H. Kim, S. Fouladdel, Z. Zhang, P. Soni et al., PD-L 1 expression in circulating tumor cells increases during radio (chemo) therapy and indicates poor prognosis in non-small cell lung cancer. Sci. Rep. 9, 566 ( 2019). https://doi.org/10.1038/s41598-018-36096-7
|
264. |
|
265. |
D. Shahdeo, N. Chauhan, A. Majumdar, A. Ghosh, S. Gandhi, Graphene-based field-effect transistor for ultrasensitive immunosensing of SARS-CoV-2 spike S1 antigen. ACS Appl. Bio Mater. 5(7), 3563-3572 ( 2022). https://doi.org/10.1021/acsabm.2c00503
|
266. |
N. Gupta, V. Renugopalakrishnan, D. Liepmann, R. Paulmurugan, B.D. Malhotra, Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 141, 111435 ( 2019). https://doi.org/10.1016/j.bios.2019.111435
|
267. |
J. Yang, G. Li, L. Zu, W. Wang, Z. Ge et al., Optogenetically engineered cell-based graphene transistor for pharmacodynamic evaluation of anticancer drugs. Sens. Actuators B Chem. 358, 131494 ( 2022). https://doi.org/10.1016/j.snb.2022.131494
|
268. |
|
269. |
|
270. |
|
271. |
Y. Song, W. Zou, Q. Lu, L. Lin, Z. Liu, Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 17(48), 2007600 ( 2021). https://doi.org/10.1002/smll.202007600
|
272. |
X. Yang, J. Li, R. Song, B. Zhao, J. Tang et al., Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471-478 ( 2023). https://doi.org/10.1038/s41565-023-01342-1
|
273. |
L. Liu, P. Gong, K. Liu, A. Nie, Z. Liu et al., Scalable van der Waals encapsulation by inorganic molecular crystals. Adv. Mater. 34(7), 2106041 ( 2022). https://doi.org/10.1002/adma.202106041
|
274. |
C. Choi, M.K. Choi, S.Y. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS 2-graphene curved image sensor array. Nat. Commun. 8, 1664 ( 2017). https://doi.org/10.1038/s41467-017-01824-6
|
275. |
|
276. |
M. Horowitz, 1.1 Computing's energy problem (and what we can do about it). in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 10-14 ( 2014). https://doi.org/10.1109/ISSCC.2014.6757323
|
277. |
|
278. |
Y. Zhu, Y. Zhu, H. Mao, Y. He, S. Jiang et al., Recent advances in emerging neuromorphic computing and perception devices. J. Phys. D Appl. Phys. 55(5), 053002 ( 2021). https://doi.org/10.1088/1361-6463/ac2868
|
279. |
X. Zhou, L. Zhao, W. Zhen, Y. Lin, C. Wang et al., Phase-transition-induced VO 2 thin film IR photodetector and threshold switching selector for optical neural network applications. Adv. Electron. Mater. 7(5), 2001254 ( 2021). https://doi.org/10.1002/aelm.202001254
|
280. |
|
281. |
|
282. |
A.A. Cruz-Cabrera, M. Yang, G. Cui, E.C. Behrman, J.E. Steck et al., Reinforcement and backpropagation training for an optical neural network using self-lensing effects. IEEE Trans. Neural Netw. 11(6), 1450-1457 ( 2000). https://doi.org/10.1109/72.883476
|
283. |
|
284. |
M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 ( 2013). https://doi.org/10.1038/ncomms2652
|
285. |
S. Lei, F. Wen, B. Li, Q. Wang, Y. Huang et al., Optoelectronic memory using two-dimensional materials. Nano Lett. 15(1), 259-265 ( 2015). https://doi.org/10.1021/nl503505f
|
286. |
V.K. Sangwan, D. Jariwala, I.S. Kim, K.-S. Chen, T.J. Marks et al., Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS 2. Nat. Nanotechnol. 10, 403-406 ( 2015). https://doi.org/10.1038/nnano.2015.56
|
287. |
J. Lee, S. Pak, Y.-W. Lee, Y. Cho, J. Hong et al., Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 ( 2017). https://doi.org/10.1038/ncomms14734
|
288. |
R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434-441 ( 2018). https://doi.org/10.1021/acs.nanolett.7b04342
|
289. |
|
290. |
|
291. |
S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan et al., Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638-645 ( 2020). https://doi.org/10.1038/s41928-020-00473-w
|
292. |
|
293. |
B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 ( 2022). https://doi.org/10.1038/s41467-022-30519-w
|
294. |
Y. Hu, H. Yang, J. Huang, X. Zhang, B. Tan et al., Flexible optical synapses based on In 2Se 3/MoS 2 heterojunctions for artificial vision systems in the near-infrared range. ACS Appl. Mater. Interfaces 14(50), 55839-55849 ( 2022). https://doi.org/10.1021/acsami.2c19097
|
295. |
|
296. |
F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun et al., A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 ( 2023). https://doi.org/10.1038/s41467-023-37623-5
|
297. |
Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 ( 2023). https://doi.org/10.1080/14686996.2022.2162323
|
298. |
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 ( 2022). https://doi.org/10.1007/s40820-021-00784-3
|
299. |
L. Liu, Z. Cheng, B. Jiang, Y. Liu, Y. Zhang et al., Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Inter. 13(26), 30797-30805 ( 2021). https://doi.org/10.1021/acsami.1c03202
|
300. |
S. Seo, J.-J. Lee, H.-J. Lee, H.W. Lee, S. Oh et al., Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2(2), 371-388 ( 2020). https://doi.org/10.1021/acsaelm.9b00694
|
301. |
|
302. |
H. Ning, Z. Yu, Q. Zhang, H. Wen, B. Gao et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493-500 ( 2023). https://doi.org/10.1038/s41565-023-01343-0
|
303. |
Y. Chen, Y. Zhou, F. Zhuge, B. Tian, M. Yan et al., Graphene-ferroelectric transistors as complementary synapses for supervised learning in spiking neural network. npj 2D Mater. Appl. 3, 31 ( 2019). https://doi.org/10.1038/s41699-019-0114-6
|
304. |
H.S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong et al., Dual-gated MoS 2 memtransistor crossbar array. Adv. Funct. Mater. 30(45), 2003683 ( 2020). https://doi.org/10.1002/adfm.202003683
|
305. |
X. Feng, S. Li, S.L. Wong, S. Tong, L. Chen et al., Self-Selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano 15(1), 1764-1774 ( 2021). https://doi.org/10.1021/acsnano.0c09441
|
306. |
C.-H. Wang, C. McClellan, Y. Shi, X. Zheng, V. Chen et al., 3D monolithic stacked 1T1R cells using monolayer MoS 2 FET and hBN RRAM fabricated at low (150°C) temperature. in 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 22.5.1-22.5.4 ( 2018). https://doi.org/10.1109/IEDM.2018.8614495
|
307. |
S. Rehman, M.F. Khan, S. Aftab, H. Kim, J. Eom et al., Thickness-dependent resistive switching in black phosphorus CBRAM. J. Mater. Chem. C 7(3), 725-732 ( 2019). https://doi.org/10.1039/c8tc04538k
|
308. |
Y. Wang, F. Wu, X. Liu, J. Lin, J.-Y. Chen et al., High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 115(19), 193503 ( 2019). https://doi.org/10.1063/1.5115531
|
309. |
R. Duan, D. Meng, J. Cao, α-In 2Se 3/MoS 2 ferroelectric tunnel junctions based on van der Waals heterostructures. in 2022 3rd International Conference on Electronics, Communications and Information Technology (CECIT), Sanya, China,13-18 ( 2022). https://doi.org/10.1109/CECIT58139.2022.00011
|
310. |
D. Zheng, M. Si, S.-C. Chang, N. Haratipour, Z. Chen et al., Ultrathin two-dimensional van der Waals asymmetric ferroelectric semiconductor junctions. J. Appl. Phys. 132(5), 054101 ( 2022). https://doi.org/10.1063/5.0098827
|
311. |
Y. Zhang, L. Wang, H. Chen, T. Ma, X. Lu et al., Analog and digital mode α-In 2Se 3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater. 7(12), 2100609 ( 2021). https://doi.org/10.1002/aelm.202100609
|
312. |
S. Wang, L. Liu, L. Gan, H. Chen, X. Hou et al., Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 ( 2021). https://doi.org/10.1038/s41467-020-20257-2
|
313. |
|
314. |
|
315. |
|
316. |
|
317. |
I.T. Wang, C.C. Chang, Y.Y. Chen, Y.S. Su, T.H. Hou, Two-dimensional materials for artificial synapses: toward a practical application. Neuromorph. Comput. Eng. 2, 012003 ( 2022). https://doi.org/10.1088/2634-4386/ac5086
|
318. |
G.V. Nenashev, A.N. Aleshin, I.P. Shcherbakov, V.N. Petrov, Effect of temperature variations on the behavior of a two-terminal organic-inorganic halide perovskite rewritable memristor for neuromorphic operations. Solid State Commun. 348-349, 114768 ( 2022). https://doi.org/10.1016/j.ssc.2022.114768
|
319. |
|
320. |
|
321. |
S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald et al., Memristor for computing: Myth or reality? in Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 722-731 ( 2017). https://doi.org/10.23919/DATE.2017.7927083
|
322. |
R. Xu, H. Jang, M.H. Lee, D. Amanov, Y. Cho et al., Vertical MoS 2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19(4), 2411-2417 ( 2019). https://doi.org/10.1021/acs.nanolett.8b05140
|
323. |
X. Yan, Q. Zhao, A.P. Chen, J. Zhao, Z. Zhou et al., Vacancy-induced synaptic behavior in 2D WS 2 nanosheet-based memristor for low-power neuromorphic computing. Small 15(24), 1901423 ( 2019). https://doi.org/10.1002/smll.201901423
|
324. |
F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe 2- and Mo 1-xW xTe 2-based resistive memories. Nat. Mater. 18, 55-61 ( 2019). https://doi.org/10.1038/s41563-018-0234-y
|
325. |
Y. Li, S. Long, Q. Liu, H. Lv, M. Liu, Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 13(35), 1604306 ( 2017). https://doi.org/10.1002/smll.201604306
|
326. |
A. Melianas, M.A. Kang, A. VahidMohammadi, T.J. Quill, W. Tian et al., High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv. Funct. Mater. 32(12), 2109970 ( 2021). https://doi.org/10.1002/adfm.202109970
|
327. |
T. Paul, T. Ahmed, K. Kanhaiya Tiwari, C. Singh Thakur, A. Ghosh, A high-performance MoS 2 synaptic device with floating gate engineering for neuromorphic computing. 2D Mater. 6(4), 045008 ( 2019). https://doi.org/10.1088/2053-1583/ab23ba
|
328. |
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31(4), 2005443 ( 2020). https://doi.org/10.1002/adfm.202005443
|
329. |
|
330. |
L. Chen, L. Wang, Y. Peng, X. Feng, S. Sarkar et al., A van der Waals synaptic transistor based on ferroelectric Hf 0.5Zr 0.5O 2 and 2D tungsten disulfide. Adv. Electron. Mater. 6(6), 2000057 ( 2020). https://doi.org/10.1002/aelm.202000057
|
331. |
X. Feng, Y. Li, L. Wang, S. Chen, Z.G. Yu et al., A fully printed flexible MoS 2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5(12), 1900740 ( 2019). https://doi.org/10.1002/aelm.201900740
|
332. |
B. Yao, J. Li, X. Chen, M. Yu, Z. Zhang et al., Non-volatile electrolyte-gated transistors based on graphdiyne/MoS 2 with robust stability for low-power neuromorphic computing and logic-in-memory. Adv. Funct. Mater. 31(25), 2100069 ( 2021). https://doi.org/10.1002/adfm.202100069
|
333. |
Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma et al., An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12, 3347 ( 2021). https://doi.org/10.1038/s41467-021-23719-3
|
334. |
S. Xue, S. Wang, T. Wu, Z. Di, N. Xu et al., Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition. Sci. Bull. 68(20), 2336-2343 ( 2023). https://doi.org/10.1016/j.scib.2023.09.006
|
335. |
|
336. |
|
337. |
|
338. |
J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81-89 ( 2022). https://doi.org/10.1021/acs.nanolett.1c03240
|
339. |
D. Lee, M. Park, Y. Baek, B. Bae, J. Heo et al., In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat. Commun. 13, 5223 ( 2022). https://doi.org/10.1038/s41467-022-32790-3
|
340. |
|
341. |
C. Yoo, T.-J. Ko, M.G. Kaium, R. Martinez, M.M. Islam et al., A minireview on 2D materials-enabled optoelectronic artificial synaptic devices. APL Mater. 10(7), 070702 ( 2022). https://doi.org/10.1063/5.0096053
|
342. |
Y. Sun, Y. Ding, D. Xie, Mixed‐dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv. Funct. Mater. 31(47), ( 2021). https://doi.org/10.1002/adfm.202105625
|
343. |
M.M. Islam, A. Krishnaprasad, D. Dev, R. Martinez-Martinez, V. Okonkwo et al., Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 16(7), 10188-10198 ( 2022). https://doi.org/10.1021/acsnano.2c01035
|
344. |
T. Tan, X. Jiang, C. Wang, B. Yao, H. Zhang, 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 7(11), 2000058 ( 2020). https://doi.org/10.1002/advs.202000058
|
345. |
S. Oh, J.-J. Lee, S. Seo, G. Yoo, J.-H. Park, Photoelectroactive artificial synapse and its application to biosignal pattern recognition. npj 2D Mater. Appl. 5(1), ( 2021). https://doi.org/10.1038/s41699-021-00274-5
|
346. |
Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang et al., Programmable van‐der‐Waals heterostructure‐enabled optoelectronic synaptic floating‐gate transistors with ultra‐low energy consumption. InfoMat 4(10), ( 2022). https://doi.org/10.1002/inf2.12317
|
347. |
|
348. |
Z.D. Luo, X. Xia, M.M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746-754 ( 2020). https://doi.org/10.1021/acsnano.9b07687
|
349. |
Y.X. Hou, Y. Li, Z.C. Zhang, J.Q. Li, D.H. Qi et al., Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 15(1), 1497-1508 ( 2020). https://doi.org/10.1021/acsnano.0c08921
|
350. |
F. Zhou, J. Chen, X. Tao, X. Wang, Y. Chai, 2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor. Research 2019, 9490413 (2019). https://doi.org/10.34133/2019/9490413
|
351. |
C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS 2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 ( 2020). https://doi.org/10.1038/s41467-020-19806-6
|
352. |
S. Wang, C.Y. Wang, P. Wang, C. Wang, Z.A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8(2), nwaa172 ( 2021). https://doi.org/10.1093/nsr/nwaa172
|
353. |
|
354. |
|
355. |
|
356. |
C. Girit, V. Bouchiat, O. Naaman, Y. Zhang, M. Crommie et al., Tunable graphene dc superconducting quantum interference device. Nano Lett. 9(1), 198-199 ( 2009). https://doi.org/10.1021/nl802765x
|
357. |
|
358. |
J.I.J. Wang, D. Rodan-Legrain, L. Bretheau, D.L. Campbell, B. Kannan et al., Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120-125 ( 2019). https://doi.org/10.1038/s41565-018-0329-2
|
359. |
Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10(6), 497-502 ( 2015). https://doi.org/10.1038/nnano.2015.75
|
360. |
C. Palacios-Berraquero, D.M. Kara, A.R.-P. Montblanch, M. Barbone, P. Latawiec et al., Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 ( 2017). https://doi.org/10.1038/ncomms15093
|
361. |
F. Peyskens, C. Chakraborty, M. Muneeb, D. Van Thourhout, D. Englund, Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 ( 2019). https://doi.org/10.1038/s41467-019-12421-0
|
362. |
|
363. |
A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin et al., Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540-545 ( 2020). https://doi.org/10.1038/s41563-020-0619-6
|
364. |
A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße et al., Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 ( 2021). https://doi.org/10.1038/s41467-021-24725-1
|
365. |
|
366. |
J. Chen, K. Wu, W. Hu, J. Yang, High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc. 144(43), 20035-20046 ( 2022). https://doi.org/10.1021/jacs.2c08827
|
367. |
Y. Xu, Y. Wang, S. Wang, S. Yu, B. Huang et al., Spontaneous valley polarization caused by crystalline symmetry breaking in nonmagnetic LaOMX 2 monolayers. Nano Lett. 22(22), 9147-9153 ( 2022). https://doi.org/10.1021/acs.nanolett.2c03791
|
368. |
E.J. Sie, J.W. McIver, Y.H. Lee, L. Fu, J. Kong et al., Valley-selective optical Stark effect in monolayer WS 2. Nat. Mater. 14, 290-294 ( 2015). https://doi.org/10.1038/nmat4156
|
369. |
G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi et al., Valley dynamics probed through charged and neutral exciton emission in monolayer WSe 2. Phys. Rev. B 90(7), 075413 ( 2014). https://doi.org/10.1103/PhysRevB.90.075413
|
370. |
|
371. |
|
372. |
|
373. |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 ( 2005). https://doi.org/10.1038/nature04233
|
374. |
Y. Li, H. Zheng, Y. Fang, D. Zhang, Y. Chen et al., Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS 2. Nat. Commun. 12, 2874 ( 2021). https://doi.org/10.1038/s41467-021-23076-1
|
375. |
|
376. |
|
377. |
|
378. |
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang et al., Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112(11), 116404 ( 2014). https://doi.org/10.1103/PhysRevLett.112.116404
|
379. |
|
380. |
|
381. |
E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement et al., Gate-induced superconductivity in a monolayer topological insulator. Science 362(6417), 922-925 ( 2018). https://doi.org/10.1126/science.aar4426
|
382. |
S. Wu, V. Fatemi, Q.D. Gibson, K. Watanabe, T. Taniguchi et al., Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359(6371), 76-79 ( 2018). https://doi.org/10.1126/science.aan6003
|
383. |
A. Kormányos, V. Zólyomi, N.D. Drummond, G. Burkard, Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 2014). https://doi.org/10.1103/PhysRevX.4.011034
|
384. |
A.J. Ramsay, R. Hekmati, C.J. Patrickson, S. Baber, D.R. Arvidsson-Shukur et al., Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 ( 2023). https://doi.org/10.1038/s41467-023-36196-7
|
385. |
M.B. Shalom, M.J. Zhu, V.I. Fal’Ko, A. Mishchenko, A.V. Kretinin et al., Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318-322 ( 2016). https://doi.org/10.1038/nphys3592
|
386. |
T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka et al., Zero-energy vortex bound state in the superconducting topological surface state of Fe (Se, Te). Nat. Mater. 18(8), 811-815 ( 2019). https://doi.org/10.1038/s41563-019-0397-1
|
387. |
|
388. |
Y.M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco et al., Cascaded emission of single photons from the biexciton in monolayered WSe 2. Nat. Commun. 7, 13409 ( 2016). https://doi.org/10.1038/ncomms13409
|
389. |
J. Wang, H. Li, Y. Ma, M. Zhao, W. Liu et al., Routing valley exciton emission of a WS 2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci. Appl. 9, 148 ( 2020). https://doi.org/10.1038/s41377-020-00387-4
|
390. |
|
391. |
|
392. |
|
393. |
|
394. |
C. Déprez, L. Veyrat, H. Vignaud, G. Nayak, K. Watanabe et al., A tunable Fabry-Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16(5), 555-562 ( 2021). https://doi.org/10.1038/s41565-021-00847-x
|
395. |
|
396. |
H. Idzuchi, F. Pientka, K.F. Huang, K. Harada, Ö. Gül et al., Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator. Nat. Commun. 12, 5332 ( 2021). https://doi.org/10.1038/s41467-021-25608-1
|
397. |
M. Kim, G.H. Park, J. Lee, J.H. Lee, J. Park et al., Strong proximity Josephson coupling in vertically stacked NbSe 2-graphene-NbSe 2 van der Waals junctions. Nano Lett. 17(10), 6125-6130 ( 2017). https://doi.org/10.1021/acs.nanolett.7b02707
|
398. |
|
399. |
B. Pal, A. Chakraborty, P.K. Sivakumar, M. Davydova, A.K. Gopi et al., Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18(10), 1228-1233 ( 2022). https://doi.org/10.1038/s41567-022-01699-5
|
400. |
F.K. Vries, E. Portoles, G. Zheng, T. Taniguchi, K. Watanabe et al., Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 16(7), 760-763 ( 2021). https://doi.org/10.1038/s41565-021-00896-2
|
401. |
|
402. |
L.S. Farrar, A. Nevill, Z.J. Lim, G. Balakrishnan, S. Dale et al., Superconducting quantum interference in twisted van der Waals heterostructures. Nano Lett. 21(16), 6725-6731 ( 2021). https://doi.org/10.1021/acs.nanolett.1c00152
|
403. |
J. Sarkar, K.V. Salunkhe, S. Mandal, S. Ghatak, A.H. Marchawala et al., Quantum-noise-limited microwave amplification using a graphene Josephson junction. Nat. Nanotechnol. 17, 1147-1152 ( 2022). https://doi.org/10.1038/s41565-022-01223-z
|
404. |
|
405. |
K. Wang, K.D. Greve, L.A. Jauregui, A. Sushko, A. High et al., Electrical control of charged carriers and excitons in atomically thin materials. Nat. Nanotechnol. 13(2), 128-132 ( 2018). https://doi.org/10.1038/s41565-017-0030-x
|
406. |
L.J. Wang, G.P. Guo, D. Wei, G. Cao, T. Tu et al., Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Appl. Phys. Lett. 99(11), 112117 ( 2011). https://doi.org/10.1063/1.3638471
|
407. |
Z.Z. Zhang, X.X. Song, G. Luo, G.W. Deng, V. Mosallanejad et al., Electrotunable artificial molecules based on van der Waals heterostructures. Sci. Adv. 3(10), e1701699 ( 2017). https://doi.org/10.1126/sciadv.1701699
|
408. |
M. Hamer, E. Tóvári, M. Zhu, M.D. Thompson, A. Mayorov et al., Gate-defined quantum confinement in InSe-based van der Waals heterostructures. Nano Lett. 18(6), 3950-3955 ( 2018). https://doi.org/10.1021/acs.nanolett.8b01376
|
409. |
C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, A.N. Vamivakas, Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10(6), 507-511 ( 2015). https://doi.org/10.1038/nnano.2015.79
|
410. |
C. Palacios-Berraquero, M. Barbone, D. Kara, X. Chen, I. Goykhman et al., Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 ( 2016). https://doi.org/10.1038/ncomms12978
|
411. |
A. Hötger, J. Klein, K. Barthelmi, L. Sigl, F. Sigger et al., Gate-switchable arrays of quantum light emitters in contacted monolayer MoS 2 van der Waals heterodevices. Nano Lett. 21(2), 1040-1046 ( 2021). https://doi.org/10.1021/acs.nanolett.0c04222
|
412. |
K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe 2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 ( 2021). https://doi.org/10.1038/s41467-021-23709-5
|
413. |
|
414. |
|
415. |
M. Blauth, M. Jürgensen, G. Vest, O. Hartwig, M. Prechtl et al., Coupling single photons from discrete quantum emitters in WSe 2 to lithographically defined plasmonic slot waveguides. Nano Lett. 18(11), 6812-6819 ( 2018). https://doi.org/10.1021/acs.nanolett.8b02687
|
416. |
|
417. |
A. Chakraborty, K.M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier et al., Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17(4), 2253-2258 ( 2017). https://doi.org/10.1021/acs.nanolett.6b04889
|
418. |
J. Ziegler, R. Klaiss, A. Blaikie, D. Miller, V.R. Horowitz et al., Deterministic quantum emitter formation in hexagonal boron nitride via controlled edge creation. Nano Lett. 19(3), 2121-2127 ( 2019). https://doi.org/10.1021/acs.nanolett.9b00357
|
419. |
A. Li, N. Mendelson, R. Ritika, Y. Chen, Z.Q. Xu et al., Scalable and deterministic fabrication of quantum emitter arrays from hexagonal boron nitride. Nano Lett. 21(8), 3626-3632 ( 2021). https://doi.org/10.1021/acs.nanolett.1c00685
|
420. |
A. Branny, S. Kumar, R. Proux, B.D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 ( 2017). https://doi.org/10.1038/ncomms15053
|
421. |
Y. Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B. Kim et al., Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137-1142 ( 2018). https://doi.org/10.1038/s41565-018-0275-z
|
422. |
N. Mathur, A. Mukherjee, X. Gao, J. Luo, B.A. McCullian et al., Excited-state spin-resonance spectroscopy of V B- defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 ( 2022). https://doi.org/10.1038/s41467-022-30772-z
|
423. |
M. Huang, J. Zhou, D. Chen, H. Lu, N.J. McLaughlin et al., Wide field imaging of van der Waals ferromagnet Fe 3GeTe 2 by spin defects in hexagonal boron nitride. Nat. Commun. 13, 5369 ( 2022). https://doi.org/10.1038/s41467-022-33016-2
|
424. |
A.L. Exarhos, D.A. Hopper, R.N. Patel, M.W. Doherty, L.C. Bassett, Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 ( 2019). https://doi.org/10.1038/s41467-018-08185-8
|
425. |
|
426. |
E. Fröch, L.P. Spencer, M. Kianinia, D.D. Totonjian, M. Nguyen et al., Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett. 21(15), 6549-6555 ( 2021). https://doi.org/10.1021/acs.nanolett.1c01843
|
427. |
X. Gao, B. Jiang, A.E. Llacsahuanga Allcca, K. Shen, M.A. Sadi et al., High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21(18), 7708-7714 ( 2021). https://doi.org/10.1021/acs.nanolett.1c02495
|
428. |
X. Xu, A.B. Solanki, D. Sychev, X. Gao, S. Peana et al., Greatly enhanced emission from spin defects in hexagonal boron nitride enabled by a low-loss plasmonic nanocavity. Nano Lett. 23(1), 25-33 ( 2023). https://doi.org/10.1021/acs.nanolett.2c03100
|
429. |
|
430. |
Z.L. Xiang, S. Ashhab, J. You, F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85(2), 623 ( 2013). https://doi.org/10.1103/RevModPhys.85.623
|
431. |
J.G. Kroll, W. Uilhoorn, K.L. van der Enden, D.de Jong, K. Watanabe et al., Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions. Nat. Commun. 9(1), 4615 ( 2018). https://doi.org/10.1038/s41467-018-07124-x
|
432. |
|
433. |
|
434. |
J.I. Wang, M.A. Yamoah, Q. Li, A.H. Karamlou, T. Dinh et al., Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 21(4), 398-403 ( 2022). https://doi.org/10.1038/s41563-021-01187-w
|
435. |
|
436. |
Z. Ahmed, A. Afzalian, T. Schram, D. Jang, D. Verreck et al., Introducing 2D-FETs in device scaling roadmap using DTCO. in 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 22.5.1-22.5.4 ( 2020). https://doi.org/10.1109/IEDM13553.2020.9371906
|
437. |
|
438. |
T.-A. Chen, C.-P. Chuu, C.-C. Tseng, C.-K. Wen, H.S.P. Wong et al., Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219-223 ( 2020). https://doi.org/10.1038/s41586-020-2009-2
|
439. |
|
440. |
T. Schram, Q. Smets, D. Radisic, B. Groven, D. Cott et al., High yield and process uniformity for 300 mm integrated WS2 FETs. in 2021 Symposium on VLSI Technology. Kyoto, Japan, 1-2 (2021). https://ieeexplore.ieee.org/document/9371926
URL
|
441. |
I. Asselberghs, Q. Smets, T. Schram, B. Groven, D. Verreck et al., Wafer-scale integration of double gated WS 2-transistors in 300mm Si CMOS fab. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA, 40.2.1-40.2.4 ( 2020). https://doi.org/10.1109/IEDM13553.2020.9371926
|