1. |
|
2. |
|
3. |
|
4. |
|
5. |
L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, e2006328 ( 2021). https://doi.org/10.1002/adma.202006328
|
6. |
J. Mahmood, F. Li, S.-M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441-446 ( 2017). https://doi.org/10.1038/nnano.2016.304
|
7. |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 ( 2017). https://doi.org/10.1126/science.aad4998
|
8. |
C. Li, N. Clament Sagaya Selvam, J. Fang, Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells. Nano-Micro Lett. 15, 83 ( 2023). https://doi.org/10.1007/s40820-023-01060-2
|
9. |
L. Ding, Z. Xie, S. Yu, W. Wang, A.Y. Terekhov et al., Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 15, 144 ( 2023). https://doi.org/10.1007/s40820-023-01117-2
|
10. |
J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li et al., Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 3, 773-782 ( 2018). https://doi.org/10.1038/s41560-018-0209-x
|
11. |
H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 ( 2018). https://doi.org/10.1126/sciadv.aao6657
|
12. |
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge et al., Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 ( 2017). https://doi.org/10.1038/s41467-017-01521-4
|
13. |
X. Li, J. Yu, J. Jia, A. Wang, L. Zhao et al., Confined distribution of platinum clusters on MoO 2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy 62, 127-135 ( 2019). https://doi.org/10.1016/j.nanoen.2019.05.013
|
14. |
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 ( 2016). https://doi.org/10.1038/ncomms13638
|
15. |
D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512-518 ( 2019). https://doi.org/10.1038/s41560-019-0402-6
|
16. |
J. Dendooven, R.K. Ramachandran, E. Solano, M. Kurttepeli, L. Geerts et al., Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nat. Commun. 8, 1074 ( 2017). https://doi.org/10.1038/s41467-017-01140-z
|
17. |
I.J. Hsu, Y.C. Kimmel, X. Jiang, B.G. Willis, J.G. Chen, Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063-1065 ( 2012). https://doi.org/10.1039/C1CC15812K
|
18. |
Y. Da, Z. Tian, R. Jiang, G. Chen, Y. Liu et al., Single-atom Pt doping induced p-type to n-type transition in NiO nanosheets toward self-gating modulated electrocatalytic hydrogen evolution reaction. ACS Nano 17, 18539-18547 ( 2023). https://doi.org/10.1021/acsnano.3c06595
|
19. |
Z. Chen, X. Li, J. Zhao, S. Zhang, J. Wang et al., Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 62, e202308686 ( 2023). https://doi.org/10.1002/anie.202308686
|
20. |
Y. Da, Z. Tian, R. Jiang, Y. Liu, X. Lian et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N 4C 2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 66, 1389-1397 ( 2023). https://doi.org/10.1007/s40843-022-2249-9
|
21. |
L. Chen, Y. Huang, Y. Ding, P. Yu, F. Huang et al., Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res. 16, 12186-12195 ( 2023). https://doi.org/10.1007/s12274-023-5666-2
|
22. |
Z. Zeng, S. Küspert, S.E. Balaghi, H.E.M. Hussein, N. Ortlieb et al., Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction. Small 19, e2205885 ( 2023). https://doi.org/10.1002/smll.202205885
|
23. |
Y. Qu, B. Chen, Z. Li, X. Duan, L. Wang et al., Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505-4509 ( 2019). https://doi.org/10.1021/jacs.8b09834
|
24. |
T. Wang, M. Park, Q. He, Z. Ding, Q. Yu et al., Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation. Cell. Rep. Phys. Sci. 1(11), 100235 ( 2020). https://doi.org/10.1016/j.xcrp.2020.100235
|
25. |
|
26. |
|
27. |
H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 4, 473-507 ( 2021). https://doi.org/10.1007/s41918-020-00086-z
|
28. |
J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44-67 ( 2014). https://doi.org/10.3762/bjnano.5.5
|
29. |
|
30. |
M. Park, D. Li, T. Wang, B. Zhou, Y.Y. Li et al., Elasto-capillary manipulation of freestanding inorganic nanosheets: an implication for nano-manufacturing of low-dimensional structures. Adv. Mater. Interfaces 9, 2200355 2022). https://doi.org/10.1002/admi.202200355
|
31. |
|
32. |
|
33. |
S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995-3009 ( 1995). https://doi.org/10.1103/physrevb.52.2995
|
34. |
J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate[Mo 3S 13] 2- clusters. Nat. Chem. 6, 248-253 ( 2014). https://doi.org/10.1038/nchem.1853
|
35. |
Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, e2000385 ( 2020). https://doi.org/10.1002/adma.202000385
|
36. |
X. Zhang, Y. Yang, Y. Liu, Z. Jia, Q. Wang et al., Defect engineering of a high-entropy metallic glass surface for high-performance overall water splitting at ampere-level current densities. Adv. Mater. 35, e2303439 ( 2023). https://doi.org/10.1002/adma.202303439
|
37. |
|
38. |
C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki et al., Role of graphene in enhancing the mechanical properties of TiO 2/graphene heterostructures. Nanoscale 9, 11678-11684 ( 2017). https://doi.org/10.1039/C7NR03049E
|
39. |
|
40. |
R. Michalsky, Y.-J. Zhang, A.A. Peterson, Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 4, 1274-1278 ( 2014). https://doi.org/10.1021/cs500056u
|
41. |
B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng et al., Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, e1807001 ( 2019). https://doi.org/10.1002/adma.201807001
|
42. |
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 ( 2005). https://doi.org/10.1149/1.1856988
|
43. |
|
44. |
|
45. |
J. Li, Y. Chen, Q. He, X. Xu, H. Wang et al., Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc. Natl. Acad. Sci. 119, 1-7 ( 2022). https://doi.org/10.1073/pnas.2200607119
|
46. |
|
47. |
C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555-6569 ( 2014). https://doi.org/10.1039/c3cs60468c
|
48. |
|
49. |
C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22, 1022-1029 ( 2023). https://doi.org/10.1038/s41563-023-01584-3
|
50. |
|
51. |
|
52. |
K. Yan, T.A. Maark, A. Khorshidi, V.A. Sethuraman, A.A. Peterson et al. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem. Intern. Ed. 55, 6175-6181 ( 2016). https://doi.org/10.1002/anie.201508613
|
53. |
H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman et al., Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 364-364 ( 2016). https://doi.org/10.1038/nmat4564
|
54. |
M. Erbi, H. Amara, R. Gatti, Tuning elastic properties of metallic nanoparticles by shape controlling: from atomistic to continuous models. ArXiv Preprint ArXiv: 2303.06995 (2023).
|
55. |
|
56. |
|
57. |
D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechn. 11, 218-230 ( 2016). https://doi.org/10.1038/nnano.2015.340
|
58. |
J.-J. Wang, X.-P. Li, B.-F. Cui, Z. Zhang, X.-F. Hu et al., A review of non-noble metal-based electrocatalysts for CO 2 electroreduction. Rare Met. 40, 3019-3037 ( 2021). https://doi.org/10.1007/s12598-021-01736-x
|
59. |
|
60. |
|
61. |
S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu et al., Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv. Funct. Mater. 32, 2201726 ( 2022). https://doi.org/10.1002/adfm.202201726
|
62. |
|