1. |
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15, 208 ( 2023). https://doi.org/10.1007/s40820-023-01177-4
|
2. |
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 ( 2022). https://doi.org/10.1002/adma.202207344
|
3. |
S. Liu, L. Kang, S.C. Jun, Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv. Mater. 33, e2004689 ( 2021). https://doi.org/10.1002/adma.202004689
|
4. |
Q. Li, R. Deng, Y. Chen, J. Gong, P. Wang et al., Homologous heterostructured NiS/NiS 2 @C hollow ultrathin microspheres with interfacial electron redistribution for high-performance sodium storage. Small 19, e2303642 ( 2023). https://doi.org/10.1002/smll.202303642
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
10. |
H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35, e2208237 ( 2023). https://doi.org/10.1002/adma.202208237
|
11. |
|
12. |
S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7, 366-379 ( 2023). https://doi.org/10.1016/j.joule.2023.01.010
|
13. |
D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 ( 2023). https://doi.org/10.1002/adma.202207908
|
14. |
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13, 5348 ( 2022). https://doi.org/10.1038/s41467-022-32955-0
|
15. |
X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15, 56 ( 2023). https://doi.org/10.1007/s40820-023-01031-7
|
16. |
P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11, 2100982 ( 2021). https://doi.org/10.1002/aenm.202100982
|
17. |
J. Zheng, J. Yin, D. Zhang, G. Li, D.C. Bock et al., Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv. 6, 1122 ( 2020). https://doi.org/10.1126/sciadv.abb1122
|
18. |
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275-284 ( 2023). https://doi.org/10.1039/D2EE02931F
|
19. |
|
20. |
P. Wang, S. Liang, C. Chen, X. Xie, J. Chen et al., Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater. 34, e2202733 ( 2022). https://doi.org/10.1002/adma.202202733
|
21. |
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33, e2100187 ( 2021). https://doi.org/10.1002/adma.202100187
|
22. |
J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35, 2300073 ( 2023). https://doi.org/10.1002/adma.202300073
|
23. |
H. Fu, L. Xiong, W. Han, M. Wang, Y.J. Kim et al., Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Mater. 51, 550-558 ( 2022). https://doi.org/10.1016/j.ensm.2022.06.057
|
24. |
Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15, 5017-5038 ( 2022). https://doi.org/10.1039/D2EE02416K
|
25. |
T. Wang, J. Sun, Y. Hua, B.N.V. Krishna, Q. Xi et al., Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 53, 273-304 ( 2022). https://doi.org/10.1016/j.ensm.2022.08.046
|
26. |
|
27. |
S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34, e2202552 ( 2022). https://doi.org/10.1002/adma.202202552
|
28. |
|
29. |
Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34, e2203835 ( 2022). https://doi.org/10.1002/adma.202203835
|
30. |
P. Xue, C. Guo, L. Li, H. Li, D. Luo et al., A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34, e2110047 ( 2022). https://doi.org/10.1002/adma.202110047
|
31. |
|
32. |
S. Jin, J. Yin, X. Gao, A. Sharma, P. Chen et al., Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nat. Commun. 13, 2283 ( 2022). https://doi.org/10.1038/s41467-022-29954-6
|
33. |
P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221-3229 ( 2016). https://doi.org/10.1039/C6EE01674J
|
34. |
W. Liu, D. Lin, A. Pei, Y. Cui, Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443-15450 ( 2016). https://doi.org/10.1021/jacs.6b08730
|
35. |
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 ( 2021). https://doi.org/10.1002/aenm.202003927
|
36. |
P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang et al., Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 9, 464 ( 2018). https://doi.org/10.1038/s41467-018-02888-8
|
37. |
|
38. |
|
39. |
|
40. |
S. Nam, I. Cho, J. Heo, G. Lim, M.Z. Bazant et al., Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels. Phys. Rev. Lett. 114, 114501 ( 2015). https://doi.org/10.1103/PhysRevLett.114.114501
|
41. |
N. Dong, X. Zhao, M. Yan, H. Li, H. Pan, Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy 104, 107903 2022). https://doi.org/10.1016/j.nanoen.2022.107903
|
42. |
Y. Zhong, M. Liu, Y. Lu, B. Qiu, J. Yu et al., An in-depth study of heterometallic interface chemistry: Bi-component layer enables highly reversible and stable Zn metal anodes. Energy Storage Mater. 55, 575-586 ( 2023). https://doi.org/10.1016/j.ensm.2022.12.024
|
43. |
|
44. |
P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao et al., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 15, 1638-1646 ( 2022). https://doi.org/10.1039/D1EE03882F
|
45. |
Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu et al., A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm -2 and 20 mAh cm -2. J. Am. Chem. Soc. 143, 3143-3152 ( 2021). https://doi.org/10.1021/jacs.0c11753
|
46. |
K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749 ( 2022). https://doi.org/10.1002/adfm.202109749
|
47. |
J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-In crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34, e2106867 ( 2022). https://doi.org/10.1002/adma.202106867
|
48. |
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 ( 2021). https://doi.org/10.1038/s41467-021-26947-9
|
49. |
X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 ( 2023). https://doi.org/10.1038/s41467-022-35630-6
|
50. |
X. Tian, X. Zhao, Y.Q. Su, L. Wang, H. Wang et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850-856 ( 2019). https://doi.org/10.1126/science.aaw7493
|
51. |
A.J. Nelson, H. Aharoni, X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition. J. Vac. Sci. Technol. A Vac. Surf. Films. 5(2), 231-233 ( 1987). https://doi.org/10.1116/1.574109
|
52. |
L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 ( 2022). https://doi.org/10.1073/pnas.2121138119
|
53. |
T. Wang, P. Wang, L. Pan, Z. He, L. Dai, L. Wang, S. Liu, S.C. Jun, B. Lu, S. Liang, J. Zhou, Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 13(5), 2203523 ( 2023). https://doi.org/10.1002/aenm.202203523
|
54. |
|
55. |
R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35, e2209288 ( 2023). https://doi.org/10.1002/adma.202209288
|
56. |
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn 2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 ( 2021). https://doi.org/10.1002/adma.202007416
|
57. |
J. Zhu, Z. Bie, X. Cai, Z. Jiao, Z. Wang et al., A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life. Adv. Mater. 34, e2207209 ( 2022). https://doi.org/10.1002/adma.202207209
|
58. |
H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12, 2200665 ( 2022). https://doi.org/10.1002/aenm.202200665
|
59. |
S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn 2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16, 1013-1024 ( 2022). https://doi.org/10.1021/acsnano.1c08638
|
60. |
D. Deng, K. Fu, R. Yu, J. Zhu, H. Cai et al., Ion tunnel matrix initiated oriented attachment for highly utilized Zn anodes. Adv. Mater. 35, e2302353 ( 2023). https://doi.org/10.1002/adma.202302353
|
61. |
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 ( 2020). https://doi.org/10.1038/s41467-020-17752-x
|
62. |
H. Gan, J. Wu, F. Zhang, R. Li, H. Liu, Uniform Zn 2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Mater. 55, 264-271 ( 2023). https://doi.org/10.1016/j.ensm.2022.11.044
|
63. |
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828-11842 ( 2021). https://doi.org/10.1021/acsnano.1c02928
|
64. |
S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33, 2208230 ( 2023). https://doi.org/10.1002/adfm.202208230
|
65. |
L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13, 2370050 ( 2023). https://doi.org/10.1002/aenm.202370050
|
66. |
J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11, 2100676 ( 2021). https://doi.org/10.1002/aenm.202100676
|
67. |
Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35, e2300019 ( 2023). https://doi.org/10.1002/adma.202300019
|
68. |
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, e202215324 ( 2023). https://doi.org/10.1002/anie.202215324
|
69. |
X. Luan, L. Qi, Z. Zheng, Y. Gao, Y. Xue et al., Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202215968 ( 2023). https://doi.org/10.1002/anie.202215968
|
70. |
H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase. Energy Environ. Sci. 15, 1872-1881 ( 2022). https://doi.org/10.1039/D2EE00209D
|
71. |
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 ( 2022). https://doi.org/10.1038/s41467-022-30939-8
|
72. |
Q. Li, A. Chen, D. Wang, Y. Zhao, X. Wang et al., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 13, 3699 ( 2022). https://doi.org/10.1038/s41467-022-31461-7
|
73. |
H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13, 2300550 ( 2023). https://doi.org/10.1002/aenm.202300550
|
74. |
Q. Hu, J. Hou, Y. Liu, L. Li, Q. Ran et al., Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 35, e2303336 ( 2023). https://doi.org/10.1002/adma.202303336
|
75. |
Y. Lyu, J.A. Yuwono, P. Wang, Y. Wang, F. Yang et al., Organic pH buffer for dendrite-free and shuttle-free Zn-I 2 batteries. Angew. Chem. Int. Ed. 62, e202303011 ( 2023). https://doi.org/10.1002/anie.202303011
|
76. |
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15, 126 ( 2023). https://doi.org/10.1007/s40820-023-01093-7
|
77. |
S. Liu, Y. Yin, D. Ni, K.S. Hui, M. Ma et al., New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co 2MnO 4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Mater. 22, 384-396 ( 2019). https://doi.org/10.1016/j.ensm.2019.02.014
|
78. |
S. Liu, L. Kang, J. Zhang, S.C. Jun, Y. Yamauchi, Sodium preintercalation-induced oxygen-deficient hydrated potassium manganese oxide for high-energy flexible Mg-ion supercapacitors. NPG Asia Mater. 15, 9 ( 2023). https://doi.org/10.1038/s41427-022-00450-z
|