1. |
|
2. |
P. Meng, J. Huang, Z. Yang, M. Jiang, Y. Wang et al., Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 15, 188 ( 2023). https://doi.org/10.1007/s40820-023-01160-z
|
3. |
B. Shi, L. Li, A. Chen, T.-C. Jen, X. Liu et al., Continuous fabrication of Ti 3C 2T x MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 14, 34 ( 2021). https://doi.org/10.1007/s40820-021-00757-6
|
4. |
R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang et al., Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 11, 2001537 ( 2021). https://doi.org/10.1002/aenm.202001537
|
5. |
|
6. |
C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanoparticle assemblies from inanimate to animate. Sci. Adv. 6, eaba1321 ( 2020). https://doi.org/10.1126/sciadv.aba1321
|
7. |
|
8. |
Y. Lu, G. Zhang, H. Zhou, S. Cao, Y. Zhang et al., Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem. Int. Ed. 62, e202311075 ( 2023). https://doi.org/10.1002/anie.202311075
|
9. |
|
10. |
|
11. |
E. Pameté, L. Köps, F.A. Kreth, S. Pohlmann, A. Varzi et al., The many deaths of supercapacitors: degradation, aging, and performance fading. Adv. Energy Mater. 13, 2370125 ( 2023). https://doi.org/10.1002/aenm.202370125
|
12. |
W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 ( 2019). https://doi.org/10.1126/sciadv.aav7412
|
13. |
W. Chen, K. Yang, M. Luo, D. Zhang, Z. Li et al., Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors. EcoMat 5, e12271 ( 2023). https://doi.org/10.1002/eom2.12271
|
14. |
X.R. Li, H.P. Li, X.Q. Fan, X.L. Shi, J.J. Liang, 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 10(14), 1903794 ( 2020). https://doi.org/10.1002/aenm.201903794
|
15. |
D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 8, 1802386 ( 2018). https://doi.org/10.1002/aenm.201802386
|
16. |
J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou et al., Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 11, 46 ( 2019). https://doi.org/10.1007/s40820-019-0280-2
|
17. |
J. Yang, Q. Cao, X. Tang, J. Du, T. Yu et al., 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649-19658 ( 2021). https://doi.org/10.1039/D1TA02617H
|
18. |
Z. Lei, L. Liu, H. Zhao, F. Liang, S. Chang et al., Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat. Commun. 11, 299 ( 2020). https://doi.org/10.1038/s41467-019-14170-6
|
19. |
B. Asbani, G. Buvat, J. Freixas, M. Huvé, D. Troadec et al., Ultra-high areal capacitance and high rate capability RuO 2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Mater. 42, 259-267 ( 2021). https://doi.org/10.1016/j.ensm.2021.07.038
|
20. |
S. Ni, M. Zhang, C. Li, R. Gao, J. Sheng et al., A 3D framework with Li 3N-Li 2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 35, 2209028 ( 2023). https://doi.org/10.1002/adma.202209028
|
21. |
S.D. Lacey, D.J. Kirsch, Y. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, e1705651 ( 2018). https://doi.org/10.1002/adma.201705651
|
22. |
X. Fu, Y. Zhou, J. Huang, L. Feng, P. Yu et al., Rethinking the electrode multiscale microstructures: a review on structuring strategies toward battery manufacturing genome. Adv. Energy Mater. 13, 2301385 ( 2023). https://doi.org/10.1002/aenm.202301385
|
23. |
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 ( 2020). https://doi.org/10.1002/adma.201907176
|
24. |
|
25. |
|
26. |
|
27. |
H. Zhao, C. Wang, R. Vellacheri, M. Zhou, Y. Xu et al., Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Adv. Mater. 26, 7654-7659 ( 2014). https://doi.org/10.1002/adma.201402766
|
28. |
|
29. |
H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc. Natl. Acad. Sci. U.S.A. 112, 6573-6578 ( 2015). https://doi.org/10.1073/pnas.1423889112
|
30. |
X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na 3V 2(PO 4) 3 in a porous graphene network. Adv. Mater. 27, 6670-6676 ( 2015). https://doi.org/10.1002/adma.201502864
|
31. |
K. Qin, E. Liu, J. Li, J. Kang, C. Shi et al., Supercapacitors: free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 6, 1670107 ( 2016). https://doi.org/10.1002/aenm.201670107
|
32. |
J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193-202 ( 2016). https://doi.org/10.1016/j.nanoen.2016.04.037
|
33. |
C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538-545 ( 2017). https://doi.org/10.1039/C6EE03716J
|
34. |
J. Kang, J. Kim, S. Lee, S. Wi, C. Kim et al., Breathable carbon-free electrode: black TiO 2 with hierarchically ordered porous structure for stable Li-O 2 battery. Adv. Energy Mater. 7, 1700814 ( 2017). https://doi.org/10.1002/aenm.201700814
|
35. |
X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227-235 ( 2018). https://doi.org/10.1038/s41560-018-0104-5
|
36. |
X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao et al., Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, e1900341 ( 2019). https://doi.org/10.1002/adma.201900341
|
37. |
X. Lu, Y. Yin, L. Zhang, S. Huang, L. Xi et al., 3D Ag/NiO-Fe 2O 3/Ag nanomembranes as carbon-free cathode materials for Li-O 2 batteries. Energy Storage Mater. 16, 155-162 ( 2019). https://doi.org/10.1016/j.ensm.2018.05.002
|
38. |
J. Shang, Q. Huang, L. Wang, Y. Yang, P. Li et al., Soft hybrid scaffold (SHS) strategy for realization of ultrahigh energy density of wearable aqueous supercapacitors. Adv. Mater. 32, e1907088 ( 2020). https://doi.org/10.1002/adma.201907088
|
39. |
S.G. Patnaik, J. Shamsudeen Seenath, D. Bourrier, S. Prabhudev, D. Guay et al., Porous RuO xN yS z electrodes for microsupercapacitors and microbatteries with enhanced areal performance. ACS Energy Lett. 6, 131-139 ( 2021). https://doi.org/10.1021/acsenergylett.0c02017
|
40. |
P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 ( 2021). https://doi.org/10.1002/adma.202006247
|
41. |
Y. Zhuang, D. Deng, L. Lin, B. Liu, S. Qu et al., Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries. Nano Energy 97, 107202 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107202
|
42. |
X. Li, S. Ling, L. Zeng, H. He, X. Liu et al., Directional freezing assisted 3D printing to solve a flexible battery dilemma: ultrahigh energy/power density and uncompromised mechanical compliance. Adv. Energy Mater. 12, 2200233 ( 2022). https://doi.org/10.1002/aenm.202200233
|
43. |
J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15, 37 ( 2023). https://doi.org/10.1007/s40820-022-01007-z
|
44. |
G. Hyun, M. Park, G. Bae, J.-W. Chung, Y. Ham et al., Unraveling the significance of Li +/e -/O 2 phase boundaries with a 3D-patterned Cu electrode for Li-O 2 batteries. Adv. Funct. Mater. 33, 2303059 ( 2023). https://doi.org/10.1002/adfm.202303059
|
45. |
T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31, 2010041 ( 2021). https://doi.org/10.1002/adfm.202010041
|
46. |
B. Bounor, B. Asbani, C. Douard, F. Favier, T. Brousse et al., On chip MnO 2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Mater. 38, 520-527 ( 2021). https://doi.org/10.1016/j.ensm.2021.03.034
|
47. |
S.J. Yeo, M.J. Oh, P.J. Yoo, Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 31, e1803670 ( 2019). https://doi.org/10.1002/adma.201803670
|
48. |
W. Li, X. Guo, P. Geng, M. Du, Q. Jing et al., Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 33, e2105163 ( 2021). https://doi.org/10.1002/adma.202105163
|
49. |
|
50. |
H. Hamed, S. Yari, J. D’Haen, F.U. Renner, N. Reddy et al., Demystifying charge transport limitations in the porous electrodes of lithium-ion batteries. Adv. Energy Mater. 10, 2002492 ( 2020). https://doi.org/10.1002/aenm.202002492
|
51. |
S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 ( 2023). https://doi.org/10.1007/s40820-023-01150-1
|
52. |
|
53. |
|
54. |
C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642-666 ( 2020). https://doi.org/10.1038/s41578-020-0195-z
|
55. |
Z. Niu, W. Zhao, B. Wu, H. Wang, W.-F. Lin et al., π learning: a performance-informed framework for microstructural electrode design. Adv. Energy Mater. 13, 2370067 ( 2023). https://doi.org/10.1002/aenm.202370067
|
56. |
|
57. |
Z. Chen, D.L. Danilov, R.-A. Eichel, P.H.L. Notten, Porous electrode modeling and its applications to Li-ion batteries. Adv. Energy Mater. 12, 2201506 ( 2022). https://doi.org/10.1002/aenm.202201506
|
58. |
D.P. Finegan, I. Squires, A. Dahari, S. Kench, K.L. Jungjohann et al., Machine-learning-driven advanced characterization of battery electrodes. ACS Energy Lett. 7, 4368-4378 ( 2022). https://doi.org/10.1021/acsenergylett.2c01996
|
59. |
L. Snarski, I. Biran, T. Bendikov, I. Pinkas, M.A. Iron et al., Highly conductive robust carbon nanotube networks for strong buckypapers and transparent electrodes. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202309742
|
60. |
Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng et al., Self-assembly of flexible free-standing 3D porous MoS 2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 ( 2017). https://doi.org/10.1002/adfm.201700234
|
61. |
K. Lu, Z. Hu, J. Ma, H. Ma, L. Dai et al., A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 8, 527 ( 2017). https://doi.org/10.1038/s41467-017-00649-7
|
62. |
|
63. |
G.V. Alexander, C. Shi, J. O’Neill, E.D. Wachsman, Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136-1143 ( 2023). https://doi.org/10.1038/s41563-023-01627-9
|
64. |
H. Bian, R. Dong, Q. Shao, S. Wang, M.-F. Yuen et al., Water-enabled crystallization of mesoporous SnO 2 as a binder-free electrode for enhanced sodium storage. J. Mater. Chem. A 5, 23967-23975 ( 2017). https://doi.org/10.1039/C7TA08228B
|
65. |
Y. Katsuyama, N. Haba, H. Kobayashi, K. Iwase, A. Kudo et al., Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv. Funct. Mater. 32, 2201544 ( 2022). https://doi.org/10.1002/adfm.202201544
|
66. |
J. Tao, F. Yang, T. Wu, J. Shi, H.-B. Zhao et al., Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chem. Eng. J. 461, 142061 ( 2023). https://doi.org/10.1016/j.cej.2023.142061
|
67. |
C. Yan, Y.-J. Luo, W.-G. Zhang, Z.-F. Zhu, P.-Y. Li et al., Preparation of a novel melamine foam structure and properties. J. Appl. Polym. Sci. 139, e51992 ( 2022). https://doi.org/10.1002/app.51992
|
68. |
X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15, 32 ( 2023). https://doi.org/10.1007/s40820-022-01004-2
|
69. |
|
70. |
|
71. |
P. Sun, X. Li, J. Shao, P.V. Braun, High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv. Mater. 33, e2006229 ( 2021). https://doi.org/10.1002/adma.202006229
|
72. |
Z. Cai, F. Tang, Y. Yang, S. Xu, C. Xu et al., A multifunctional super-sodiophilic coating on aluminum current collector for high-performance anode-free Na-metal batteries. Nano Energy 116, 108814 ( 2023). https://doi.org/10.1016/j.nanoen.2023.108814
|
73. |
L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 ( 2023). https://doi.org/10.1007/s40820-023-01041-5
|
74. |
I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 ( 2022). https://doi.org/10.1007/s40820-022-00944-z
|
75. |
Z. Pan, Y. Qian, Y. Li, X. Xie, N. Lin et al., Novel bilayer-shelled N, O-doped hollow porous carbon microspheres as high performance anode for potassium-ion hybrid capacitors. Nano-Micro Lett. 15, 151 ( 2023). https://doi.org/10.1007/s40820-023-01113-6
|
76. |
Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 ( 2023). https://doi.org/10.1007/s40820-023-01065-x
|
77. |
|
78. |
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 ( 2017). https://doi.org/10.1002/advs.201700322
|
79. |
S. Seenivasan, K.I. Shim, C. Lim, T. Kavinkumar, A.T. Sivagurunathan et al., Boosting pseudocapacitive behavior of supercapattery electrodes by incorporating a Schottky junction for ultrahigh energy density. Nano-Micro Lett. 15, 62 ( 2023). https://doi.org/10.1007/s40820-023-01016-6
|
80. |
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5-19 ( 2020). https://doi.org/10.1038/s41578-019-0142-z
|
81. |
|
82. |
X. Chen, W. Li, G. Zhang, F. Sun, Q. Jing et al., Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater. Mater. Today Chem. 23, 100705 ( 2022). https://doi.org/10.1016/j.mtchem.2021.100705
|
83. |
F. Wang, J.Y. Cheong, J. Lee, J. Ahn, G. Duan et al., Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices. Adv. Funct. Mater. 31, 2101077 ( 2021). https://doi.org/10.1002/adfm.202101077
|
84. |
K. Liu, R. Mo, W. Dong, W. Zhao, F. Huang, Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 8, 20072-20081 ( 2020). https://doi.org/10.1039/D0TA06108E
|
85. |
J. Xu, J. Lei, N. Ming, C. Zhang, K. Huo, Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 32, 2204426 ( 2022). https://doi.org/10.1002/adfm.202204426
|
86. |
C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan et al., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9, 5198-5207 ( 2015). https://doi.org/10.1021/acsnano.5b00582
|
87. |
Z. Liang, Y. Wang, B. Pei, S.-B. Son, M. Nguyen et al., 3D-integrated, multi-functional carbon fibers for stable, high-areal-capacity batteries. Adv. Energy Mater. 13, 2301295 ( 2023). https://doi.org/10.1002/aenm.202301295
|
88. |
|
89. |
H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an In-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 ( 2022). https://doi.org/10.1007/s40820-022-00839-z
|
90. |
J. Ahn, H. Han, J.-H. Ha, Y. Jeong, Y. Jung et al., Micro-/nanohierarchical structures physically engineered on surfaces: analysis and perspective. Adv. Mater. ( 2023). https://doi.org/10.1002/adma.202300871
|
91. |
M. Li, S. Zhou, L. Cheng, F. Mo, L. Chen et al., 3D printed supercapacitor: techniques, materials, designs, and applications. Adv. Funct. Mater. 33, 2208034 ( 2023). https://doi.org/10.1002/adfm.202208034
|
92. |
D. Lin, S. Chandrasekaran, J.-B. Forien, X. Xue, A. Pinongcos et al., 3D-printed graded electrode with ultrahigh MnO 2 loading for non-aqueous electrochemical energy storage. Adv. Energy Mater. 13, 2300408 ( 2023). https://doi.org/10.1002/aenm.202300408
|
93. |
|
94. |
A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu-Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 ( 2018). https://doi.org/10.1002/aenm.201701706
|
95. |
T. Wang, X. Tian, L. Li, L. Lu, S. Hou et al., 3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 8, 1749-1756 ( 2020). https://doi.org/10.1039/C9TA11386J
|
96. |
Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss et al., Compressible electrodes: 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 ( 2018). https://doi.org/10.1002/admt.201870026
|
97. |
X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502-3511 ( 2018). https://doi.org/10.1021/acsnano.8b00304
|
98. |
Y. Gao, Y. Lin, J. Chen, Q. Lin, Y. Wu et al., Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale 8, 13280-13287 ( 2016). https://doi.org/10.1039/c6nr03337g
|
99. |
Y. Gao, Y. Lin, Z. Peng, Q. Zhou, Z. Fan, Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale 9, 18311-18317 ( 2017). https://doi.org/10.1039/c7nr06234f
|
100. |
Y. Jiang, Z. Zhang, D. Chen, J. Du, Y. Yang et al., Vertical growth of 2D covalent organic framework nanoplatelets on a macroporous scaffold for high-performance electrodes. Adv. Mater. 34, e2204250 ( 2022). https://doi.org/10.1002/adma.202204250
|
101. |
B. Zhang, X. Li, J. Zou, F. Kim, MnCO 3 on graphene porous framework via diffusion-driven layer-by-layer assembly for high-performance pseudocapacitor. ACS Appl. Mater. Interfaces 12, 47695-47703 ( 2020). https://doi.org/10.1021/acsami.0c15511
|
102. |
M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi et al., Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. U.S.A. 112, 4233-4238 ( 2015). https://doi.org/10.1073/pnas.1420398112
|
103. |
|
104. |
X. Chang, M.F. El-Kady, A. Huang, C.-W. Lin, S. Aguilar et al., 3D graphene network with covalently grafted aniline tetramer for ultralong-life supercapacitors. Adv. Funct. Mater. 31, 2102397 ( 2021). https://doi.org/10.1002/adfm.202102397
|
105. |
J. Li, M. Zhu, Z. An, Z. Wang, M. Toda et al., Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. J. Power. Sources 401, 204-212 ( 2018). https://doi.org/10.1016/j.jpowsour.2018.08.099
|
106. |
Y.-Q. Li, X.-M. Shi, X.-Y. Lang, Z. Wen, J.-C. Li et al., Remarkable improvements in volumetric energy and power of 3D MnO 2 microsupercapacitors by tuning crystallographic structures. Adv. Funct. Mater. 26, 1830-1839 ( 2016). https://doi.org/10.1002/adfm.201504886
|
107. |
F. Grote, Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PP y and MnO 2. Nano Energy 10, 63-70 ( 2014). https://doi.org/10.1016/j.nanoen.2014.08.019
|
108. |
L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 13, 2203683 ( 2023). https://doi.org/10.1002/aenm.202203683
|
109. |
M.-Y. Zhang, Y. Song, D. Guo, D. Yang, X. Sun et al., Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. J. Mater. Chem. A 7, 9815-9821 ( 2019). https://doi.org/10.1039/C9TA00705A
|
110. |
J. Gong, J.-C. Li, J. Yang, S. Zhao, Z. Yang et al., High-performance flexible in-plane micro-supercapacitors based on vertically aligned CuSe@Ni(OH) 2 hybrid nanosheet films. ACS Appl. Mater. Interfaces 10, 38341-38349 ( 2018). https://doi.org/10.1021/acsami.8b12543
|
111. |
T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO 2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288-294 ( 2014). https://doi.org/10.1016/j.nanoen.2014.10.003
|
112. |
J. Li, M. Zhu, Z. Wang, T. Ono, Engineering micro-supercapacitors of graphene nanowalls/ni heterostructure based on microfabrication technology. Appl. Phys. Lett. 109, 153901 ( 2016). https://doi.org/10.1063/1.4964787
|
113. |
C. Kim, J. Sul, J.H. Moon, Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Mater. 57, 308-315 ( 2023). https://doi.org/10.1016/j.ensm.2023.02.026
|
114. |
X. Yu, N. Li, S. Zhang, C. Liu, L. Chen et al., Ultra-thick 3D graphene frameworks with hierarchical pores for high-performance flexible micro-supercapacitors. J. Power. Sources 478, 229075 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.229075
|
115. |
S. Sollami Delekta, M.M. Laurila, M. Mäntysalo, J. Li, Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 12, 40 ( 2020). https://doi.org/10.1007/s40820-020-0368-8
|
116. |
|
117. |
T. Lv, G. Zhu, S. Dong, Q. Kong, Y. Peng et al., Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202216089 ( 2023). https://doi.org/10.1002/anie.202216089
|
118. |
Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35, e2307003 ( 2023). https://doi.org/10.1002/adma.202307003
|
119. |
S. Shi, Y. Li, B.-N. Ngo-Dinh, J. Markmann, J. Weissmüller, Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026-1033 ( 2021). https://doi.org/10.1126/science.abd9391
|
120. |
Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song et al., Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 ( 2018). https://doi.org/10.1002/aenm.201802398
|
121. |
Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen et al., Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 10, 4292 ( 2019). https://doi.org/10.1038/s41467-019-12274-7
|
122. |
D. Feng, H. Yang, X. Guo, 3-dimensional hierarchically porous ZnFe 2O 4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 355, 687-696 ( 2019). https://doi.org/10.1016/j.cej.2018.08.202
|
123. |
Y. Wang, S. Luo, M. Chen, L. Wu, Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 30, 2000373 ( 2020). https://doi.org/10.1002/adfm.202000373
|
124. |
T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao et al., Porous Fe 2O 3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140-5147 ( 2017). https://doi.org/10.1021/acsnano.7b02198
|
125. |
H. Zhang, P. Chen, H. Xia, G. Xu, Y. Wang et al., An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti 3C 2T x network for enhanced lithium storage. Energy Environ. Sci. 15, 5240-5250 ( 2022). https://doi.org/10.1039/D2EE02147A
|
126. |
X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu et al., A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage. Adv. Funct. Mater. 31, 2011264 ( 2021). https://doi.org/10.1002/adfm.202011264
|
127. |
H. Dai, X. Zhao, H. Xu, J. Yang, J. Zhou et al., Design of vertically aligned two-dimensional heterostructures of rigid Ti 3C 2T X MXene and pliable vanadium pentoxide for efficient lithium ion storage. ACS Nano 16, 5556-5565 ( 2022). https://doi.org/10.1021/acsnano.1c10212
|
128. |
N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14, 146 ( 2022). https://doi.org/10.1007/s40820-022-00892-8
|
129. |
Z. Lv, M. Yue, M. Ling, H. Zhang, J. Yan et al., Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv. Energy Mater. 11, 2003725 ( 2021). https://doi.org/10.1002/aenm.202003725
|
130. |
S. Tu, Z. Lu, M. Zheng, Z. Chen, X. Wang et al., Single-layer-particle electrode design for practical fast-charging lithium-ion batteries. Adv. Mater. 34, e2202892 ( 2022). https://doi.org/10.1002/adma.202202892
|
131. |
Y. Ham, N.J. Fritz, G. Hyun, Y.B. Lee, J.S. Nam et al., 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ. Sci. 14, 5894-5902 ( 2021). https://doi.org/10.1039/d1ee01739j
|
132. |
J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 ( 2013). https://doi.org/10.1038/ncomms2747
|
133. |
Z. Hao, L. Xu, Q. Liu, W. Yang, X. Liao et al., On-chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH) 2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 29, 1808470 ( 2019). https://doi.org/10.1002/adfm.201808470
|
134. |
W.C. Records, S. Wei, A.M. Belcher, Virus-templated nickel phosphide nanofoams as additive-free, thin-film Li-ion microbattery anodes. Small 15, e1903166 ( 2019). https://doi.org/10.1002/smll.201903166
|
135. |
J.H. Pikul, J. Liu, P.V. Braun, W.P. King, Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. J. Power. Sources 315, 308-315 ( 2016). https://doi.org/10.1016/j.jpowsour.2016.03.034
|
136. |
|
137. |
M. Jiang, C. Fu, P. Meng, J. Ren, J. Wang et al., Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 34, e2102026 ( 2022). https://doi.org/10.1002/adma.202102026
|
138. |
Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34, e2106937 ( 2022). https://doi.org/10.1002/adma.202106937
|
139. |
Y. Zhang, S. Liu, Y. Ji, J. Ma, H. Yu, Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, e1706310 ( 2018). https://doi.org/10.1002/adma.201706310
|
140. |
H. Song, J. Su, C. Wang, Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature. Adv. Mater. 33, e2006141 ( 2021). https://doi.org/10.1002/adma.202006141
|
141. |
K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699-728 ( 2015). https://doi.org/10.1039/C4CS00218K
|
142. |
J. Noh, J. Tan, D.R. Yadav, P. Wu, K.Y. Xie et al., Understanding of lithium insertion into 3D porous carbon scaffolds with hybridized lithiophobic and lithiophilic surfaces by In-operando study. Nano Lett. 20, 3681-3687 ( 2020). https://doi.org/10.1021/acs.nanolett.0c00618
|
143. |
|
144. |
|
145. |
H. Wang, J. Dong, Q. Guo, W. Xu, H. Zhang et al., Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Mater. 42, 526-532 ( 2021). https://doi.org/10.1016/j.ensm.2021.08.013
|
146. |
D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407-5445 ( 2020). https://doi.org/10.1039/c9cs00636b
|
147. |
X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871-2878 ( 2020). https://doi.org/10.1021/acs.nanolett.0c00693
|
148. |
X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, e1905219 ( 2020). https://doi.org/10.1002/adma.201905219
|
149. |
|
150. |
C. Xu, J. Qiu, Y. Dong, Y. Li, Y. Shen et al., Dual-functional electrode promoting dendrite-free and CO 2 utilization enabled high-reversible symmetric Na-CO 2 batteries. Energy Environ. Mater. ( 2023). https://doi.org/10.1002/eem2.12626
|
151. |
J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 ( 2018). https://doi.org/10.1038/s41467-018-06879-7
|
152. |
L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou et al., Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 9, 31-38 ( 2017). https://doi.org/10.1016/j.ensm.2017.06.004
|
153. |
X. Zhu, H. Cheng, S. Lyu, J. Huang, J. Gu et al., High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes. Adv. Energy Mater. 13, 2300129 ( 2023). https://doi.org/10.1002/aenm.202300129
|
154. |
S.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang et al., Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett. 20, 2724-2732 ( 2020). https://doi.org/10.1021/acs.nanolett.0c00352
|
155. |
G.J.H. Lim, Z. Lyu, X. Zhang, J.J. Koh, Y. Zhang et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 8, 9058-9067 ( 2020). https://doi.org/10.1039/D0TA00209G
|
156. |
J. He, L. Ai, T. Yao, Z. Xu, D. Chen et al., In situ reaction fabrication of a mixed-ion/electron-conducting skeleton toward stable lithium metal anodes. Energy Environ. Mater. 6, 12614 ( 2023). https://doi.org/10.1002/eem2.12614
|
157. |
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828-11842 ( 2021). https://doi.org/10.1021/acsnano.1c02928
|
158. |
H. Lu, J. Hu, Y. Zhang, K. Zhang, X. Yan et al., 3D cold-trap environment printing for long-cycle aqueous Zn-ion batteries. Adv. Mater. 35, e2209886 ( 2023). https://doi.org/10.1002/adma.202209886
|
159. |
M. Zhu, S. Li, B. Li, Y. Gong, Z. Du et al., Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 5, eaau6264 ( 2019). https://doi.org/10.1126/sciadv.aau6264
|
160. |
L.-K. Zhao, X.-W. Gao, J. Mu, W.-B. Luo, Z. Liu et al., Durable integrated K-metal anode with enhanced mass transport through potassiphilic porous interconnected mediator. Adv. Funct. Mater. 33, 2304292 ( 2023). https://doi.org/10.1002/adfm.202304292
|
161. |
P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo et al., In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 10, 1903339 ( 2020). https://doi.org/10.1002/aenm.201903339
|
162. |
G. Huang, S. Chen, P. Guo, R. Tao, K. Jie et al., In situ constructing lithiophilic NiF x nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy. Chem. Eng. J. 395, 125122 ( 2020). https://doi.org/10.1016/j.cej.2020.125122
|
163. |
H. Zheng, Q. Zhang, Q. Chen, W. Xu, Q. Xie et al., 3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J. Mater. Chem. A 8, 313-322 ( 2020). https://doi.org/10.1039/c9ta09505e
|
164. |
Y. Li, M. Xiao, C. Shen, L. Cui, W. Yang et al., Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery. Cell Rep. Phys. Sci. 3, 101080 ( 2022). https://doi.org/10.1016/j.xcrp.2022.101080
|
165. |
|
166. |
P. Zhang, Y. Zhao, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li-O 2 batteries. Chem. Soc. Rev. 47, 2921-3004 ( 2018). https://doi.org/10.1039/C8CS00009C
|
167. |
H.-F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn-air batteries. Adv. Funct. Mater. 28, 1803329 ( 2018). https://doi.org/10.1002/adfm.201803329
|
168. |
N. Mahne, O. Fontaine, M.O. Thotiyl, M. Wilkening, S.A. Freunberger, Mechanism and performance of lithium-oxygen batteries: a perspective. Chem. Sci. 8, 6716-6729 ( 2017). https://doi.org/10.1039/c7sc02519j
|
169. |
H.-S. Lim, W.-J. Kwak, D.T. Nguyen, W. Wang, W. Xu et al., Three-dimensionally semi-ordered macroporous air electrodes for metal-oxygen batteries. J. Mater. Chem. A 11, 5746-5753 ( 2023). https://doi.org/10.1039/d2ta09442h
|
170. |
J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, 3D ordered macroporous LaFeO 3 as efficient electrocatalyst for Li-O 2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7, 2213-2219 ( 2014). https://doi.org/10.1039/C3EE42934B
|
171. |
C. Li, Z. Guo, Y. Pang, Y. Sun, X. Su et al., Three-dimensional ordered macroporous FePO 4 as high-efficiency catalyst for rechargeable Li-O 2 batteries. ACS Appl. Mater. Interfaces 8, 31638-31645 ( 2016). https://doi.org/10.1021/acsami.6b10115
|
172. |
W. Yao, Y. Yuan, G. Tan, C. Liu, M. Cheng et al., Tuning Li 2O 2 formation routes by facet engineering of MnO 2 cathode catalysts. J. Am. Chem. Soc. 141, 12832-12838 ( 2019). https://doi.org/10.1021/jacs.9b05992
|
173. |
R.R. Mitchell, B.M. Gallant, Y. Shao-Horn, C.V. Thompson, Mechanisms of morphological evolution of Li 2O 2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060-1064 ( 2013). https://doi.org/10.1021/jz4003586
|
174. |
H. Wang, X. Wang, M. Li, L. Zheng, D. Guan et al., Porous materials applied in nonaqueous Li-O 2 batteries: status and perspectives. Adv. Mater. 32, e2002559 ( 2020). https://doi.org/10.1002/adma.202002559
|
175. |
J. Wu, B. Liu, X. Fan, J. Ding, X. Han et al., Carbon-based cathode materials for rechargeable zinc-air batteries: from current collectors to bifunctional integrated air electrodes. Carbon Energy 2, 370-386 ( 2020). https://doi.org/10.1002/cey2.60
|
176. |
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O 2 batteries. Adv. Funct. Mater. 29, 1806658 ( 2019). https://doi.org/10.1002/adfm.201806658
|
177. |
C. Chen, S. Xu, Y. Kuang, W. Gan, J. Song et al., Nature-inspired tri-pathway design enabling high-performance flexible Li-O 2 batteries. Adv. Energy Mater. 9, 1802964 ( 2019). https://doi.org/10.1002/aenm.201802964
|
178. |
N. Luo, G.-J. Ji, H.-F. Wang, F. Li, Q.-C. Liu et al., Process for a free-standing and stable all-metal structure for symmetrical lithium-oxygen batteries. ACS Nano 14, 3281-3289 ( 2020). https://doi.org/10.1021/acsnano.9b08844
|
179. |
G. Liu, L. Zhang, S. Wang, L.-X. Ding, H. Wang, Hierarchical NiCo 2O 4 nanosheets on carbon nanofiber films for high energy density and long-life Li-O 2 batteries. J. Mater. Chem. A 5, 14530-14536 ( 2017). https://doi.org/10.1039/C7TA03703A
|
180. |
F. Yang, X. Liu, H. Zhang, J. Zhou, J. Jiang et al., Boosting oxygen catalytic kinetics of carbon nanotubes by oxygen-induced electron density modulation for advanced Zn-air batteries. Energy Storage Mater. 30, 138-145 ( 2020). https://doi.org/10.1016/j.ensm.2020.05.005
|
181. |
|
182. |
T. Van Tam, S.G. Kang, M.H. Kim, S.G. Lee, S.H. Hur et al., Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn-air batteries and overall water splitting. Adv. Energy Mater. 9, 1900945 ( 2019). https://doi.org/10.1002/aenm.201900945
|
183. |
J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 ( 2019). https://doi.org/10.1002/aenm.201900149
|
184. |
K. Hu, T. Yu, Y. Zhang, X. Lin, Y. Zhao et al., Inhibiting surface diffusion to synthesize 3D bicontinuous nanoporous N-doped carbon for boosting oxygen reduction reaction in flexible all-solid-state Al-air batteries. Adv. Funct. Mater. 31, 2170284 ( 2021). https://doi.org/10.1002/adfm.202170284
|
185. |
M. Jiang, C. Fu, J. Yang, Q. Liu, J. Zhang et al., Defect-engineered MnO 2 enhancing oxygen reduction reaction for high performance Al-air batteries. Energy Storage Mater. 18, 34-42 ( 2019). https://doi.org/10.1016/j.ensm.2018.09.026
|
186. |
Q. Huang, Y. Xu, Y. Guo, L. Zhang, Y. Hu et al., Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon 188, 135-145 ( 2022). https://doi.org/10.1016/j.carbon.2021.11.062
|
187. |
Q. Liao, G. Li, R. Ding, Z. He, M. Jiang et al., Facile synthesis of CO/N-doped carbon nanotubes and the application in alkaline and neutral metal-air batteries. Int. J. Hydrog. Energy 46, 31253-31261 ( 2021). https://doi.org/10.1016/j.ijhydene.2021.07.019
|
188. |
Z. Zhang, Z. Li, C. Sun, T. Zhang, S. Wang, Preparation and properties of an amorphous MnO 2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells. Catal. Today 298, 241-249 ( 2017). https://doi.org/10.1016/j.cattod.2017.04.001
|
189. |
|
190. |
C. Li, X. Li, Q. Yang, P. Sun, L. Wu et al., Tuning the mechanical and electrical properties of porous electrodes for architecting 3D microsupercapacitors with batteries-level energy. Adv. Sci. 8, 2004957 ( 2021). https://doi.org/10.1002/advs.202004957
|
191. |
|
192. |
|
193. |
|
194. |
|
195. |
S. Rana, R. Kumar, R.S. Bharj, Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. Chem. Eng. J. 463, 142336 ( 2023). https://doi.org/10.1016/j.cej.2023.142336
|
196. |
|