1. |
|
2. |
Y. Yang, S. Guo, Y. Pan, B. Lu, S. Liang et al., Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ. Sci. 16, 2358-2367 ( 2023). https://doi.org/10.1039/d3ee00501a
|
3. |
|
4. |
D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, 2310290 ( 2023). https://doi.org/10.1002/anie.202310290
|
5. |
Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 ( 2023). https://doi.org/10.1002/anie.202309601
|
6. |
H. Li, R. Zhao, W. Zhou, L. Wang, W. Li et al., Trade-off between zincophilicity and zincophobicity: toward stable Zn-based aqueous batteries. JACS Au 3, 2107-2116 ( 2023). https://doi.org/10.1021/jacsau.3c00292
|
7. |
J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co 2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 ( 2021). https://doi.org/10.1002/aenm.202003203
|
8. |
Y. Zhong, X. Xie, Z. Zeng, B. Lu, G. Chen et al., Triple-function hydrated eutectic electrolyte for enhanced aqueous zinc batteries. Angew. Chem. Int. Ed. 62, 2310577 ( 2023). https://doi.org/10.1002/anie.202310577
|
9. |
Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, 2307271 ( 2023). https://doi.org/10.1002/anie.202307271
|
10. |
|
11. |
N. Wang, X. Chen, H. Wan, B. Zhang, K. Guan et al., Zincophobic electrolyte achieves highly reversible zinc-ion batteries. Adv. Funct. Mater. 33, 2300795 ( 2023). https://doi.org/10.1002/adfm.202300795
|
12. |
|
13. |
Y. Ma, Q. Zhang, L. Liu, Y. Li, H. Li et al., N, N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Natl. Sci. Rev. 9, nwac051 ( 2022). https://doi.org/10.1093/nsr/nwac051
|
14. |
|
15. |
J. Zheng, P. Shi, C. Chen, X. Chen, Y. Gan et al., Reinforced bonding of Mo-doped MnO 2 with ammonium-ion as cathodes for durable aqueous MnO 2-Zn batteries. Sci. China Mater. 66, 3113-3122 ( 2023). https://doi.org/10.1007/s40843-023-2448-0
|
16. |
|
17. |
W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62, 2212695 ( 2023). https://doi.org/10.1002/anie.202212695
|
18. |
H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, 2217833 ( 2023). https://doi.org/10.1002/anie.202217833
|
19. |
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, 2215324 ( 2023). https://doi.org/10.1002/anie.202215324
|
20. |
Y. Yang, H. Hua, Z. Lv, M. Zhang, C. Liu et al., Reconstruction of electric double layer for long-life aqueous zinc metal batteries. Adv. Funct. Mater. 33, 2212446 ( 2023). https://doi.org/10.1002/adfm.202212446
|
21. |
F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan et al., Understanding H 2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 34, e2206754 ( 2022). https://doi.org/10.1002/adma.202206754
|
22. |
H. Li, Q. Ma, Y. Yuan, R. Wang, Z. Wang et al., Mesoporous N, S-rich carbon hollow nanospheres controllably prepared from poly(2-aminothiazole) with ultrafast and highly durable potassium storage. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202301987
|
23. |
T. Wei, Y. Ren, Y. Wang, L.-E. Mo, Z. Li et al., Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano 17, 3765-3775 ( 2023). https://doi.org/10.1021/acsnano.2c11516
|
24. |
P. Xiong, C. Lin, Y. Wei, J.-H. Kim, G. Jang et al., Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 8, 2718-2727 ( 2023). https://doi.org/10.1021/acsenergylett.3c00534
|
25. |
P. Xiong, Y. Kang, H. Yuan, Q. Liu, S.H. Baek et al., Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 9, 011401 ( 2022). https://doi.org/10.1063/5.0074327
|
26. |
|
27. |
P. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613-1625 ( 2023). https://doi.org/10.1021/acsenergylett.3c00154
|
28. |
X. Feng, P. Li, J. Yin, Z. Gan, Y. Gao et al., Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 8, 1192-1200 ( 2023). https://doi.org/10.1021/acsenergylett.2c02455
|
29. |
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247-18255 ( 2021). https://doi.org/10.1002/anie.202105756
|
30. |
B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2112693 ( 2022). https://doi.org/10.1002/adfm.202112693
|
31. |
J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 ( 2022). https://doi.org/10.1016/j.nanoen.2021.106839
|
32. |
J. Yin, X. Feng, Z. Gan, Y. Gao, Y. Cheng et al., From anode to cell: Synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Mater. 54, 623-640 ( 2023). https://doi.org/10.1016/j.ensm.2022.11.006
|
33. |
C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6, 1103-1120 ( 2022). https://doi.org/10.1016/j.joule.2022.04.017
|
34. |
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., Frontispiece: ZnF 2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, 2380762 ( 2023). https://doi.org/10.1002/anie.202380762
|
35. |
D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6, 1474-1484 ( 2023). https://doi.org/10.1038/s41893-023-01172-y
|
36. |
N. Wang, X. Dong, B. Wang, Z. Guo, Z. Wang et al., Zinc-organic battery with a wide operation-temperature window from - 70 to 150 °C. Angew. Chem. Int. Ed. 59, 14577-14583 ( 2020). https://doi.org/10.1002/anie.202005603
|
37. |
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H 2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 ( 2023). https://doi.org/10.1002/anie.202215552
|
38. |
|
39. |
L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157-2164 ( 2009). https://doi.org/10.1002/jcc.21224
|
40. |
P. Li, B.P. Roberts, D.K. Chakravorty, K.M. Merz Jr., Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733-2748 ( 2013). https://doi.org/10.1021/ct400146w
|
41. |
J.N. Canongia Lopes, A.A.H. Pádua, Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108, 16893-16898 ( 2004). https://doi.org/10.1021/jp0476545
|
42. |
W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225-11236 ( 1996). https://doi.org/10.1021/ja9621760
|
43. |
|
44. |
|
45. |
|
46. |
|
47. |
H. Zhao, Q. Fu, X. Luo, X. Wu, S. Indris et al., Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries. Energy Storage Mater. 50, 464-472 ( 2022). https://doi.org/10.1016/j.ensm.2022.05.048
|
48. |
Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8, 19367-19374 ( 2020). https://doi.org/10.1039/d0ta06622b
|
49. |
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 ( 2023). https://doi.org/10.1007/s40820-023-01171-w
|
50. |
Q. Dou, N. Yao, W.K. Pang, Y. Park, P. Xiong et al., Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn-Al alloy anodes. Energy Environ. Sci. 15, 4572-4583 ( 2022). https://doi.org/10.1039/d2ee02453e
|
51. |
|
52. |
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146-159 ( 2020). https://doi.org/10.1002/eem2.12067
|
53. |
X. Bai, Y. Nan, K. Yang, B. Deng, J. Shao et al., Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries. Adv. Funct. Mater. 33, 2307595 ( 2023). https://doi.org/10.1002/adfm.202307595
|
54. |
|
55. |
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938-1949 ( 2019). https://doi.org/10.1039/c9ee00596j
|
56. |
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 ( 2022). https://doi.org/10.1007/s40820-021-00782-5
|
57. |
J. Shi, K. Xia, L. Liu, C. Liu, Q. Zhang et al., Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile. Electrochim. Acta 358, 136937 ( 2020). https://doi.org/10.1016/j.electacta.2020.136937
|
58. |
C. Cui, D. Han, H. Lu, Z. Li, K. Zhang et al., Breaking consecutive hydrogen-bond network toward high-rate hydrous organic zinc batteries. Adv. Energy Mater. 13, 2301466 ( 2023). https://doi.org/10.1002/aenm.202301466
|
59. |
Y. Han, F. Wang, B. Zhang, L. Yan, J. Hao et al., Building block effect induces horizontally oriented bottom Zn(002) deposition for a highly stable zinc anode. Energy Storage Mater. 62, 102928 ( 2023). https://doi.org/10.1016/j.ensm.2023.102928
|
60. |
W. Li, L. Huang, H. Zhang, Y. Wu, F. Wei et al., Supramolecular mineralization strategy for engineering covalent organic frameworks with superior Zn-I 2 battery performances. Matter 6, 2312-2323 ( 2023). https://doi.org/10.1016/j.matt.2023.04.019
|
61. |
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14, 219 ( 2022). https://doi.org/10.1007/s40820-022-00969-4
|
62. |
|
63. |
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60, 13035-13041 ( 2021). https://doi.org/10.1002/anie.202103390
|