|
|
Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells |
Ruikun Cao1,2, Kexuan Sun1, Chang Liu1( ), Yuhong Mao1, Wei Guo1, Ping Ouyang1, Yuanyuan Meng1, Ruijia Tian1, Lisha Xie1, Xujie Lü44, Ziyi Ge1,3( ) |
1 Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China 2 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 4 Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People’s Republic of China |
|
|
Abstract This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells (PSCs). Via A-site cation engineering, a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine (CMA+) cation, which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations, compared to the rigid phenethyl methylamine (PEA+) analog. It demonstrates a significantly lower non-radiative recombination rate, even though the two types of bulky cations have similar chemical passivation effects on perovskite, which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation. The resulting PSCs achieve an exceptional power conversion efficiency (PCE) of 25.5% with a record-high open-circuit voltage (VOC) of 1.20 V for narrow bandgap perovskite (FAPbI3). The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
|
Received: 20 December 2023
Published: 24 April 2024
|
Corresponding Authors:
Chang Liu, Ziyi Ge
|
About author:: Ruikun Cao and Kexuan Sun have contributed equally to this work. |
|
|
|
|
Fig. 1 a-c GIWAXS patterns of 3D, 3D/2D-CMAI, and 3D/2D-PEAI films. d-f TEM images of 3D, 3D/2D-CMAI, and 3D/2D-PEAI films. g-i GIXRD patterns at different tilting angles of 3D, 3D/2D-CMAI, and 3D/2D-PEAI films. j ToF-SIMS depth profile for the 2D treated perovskite film deposited on ITO substrate. k X-ray diffraction patterns of 3-13° with 3D, 3D/2D-CMAI, and 3D/2D-PEAI films. l Linear fit of 2θ-sin2 (ψ) for 3D, 3D/2D-CMAI, and 3D/2D-PEAI films
|
|
Fig. 2 a, b Theoretical energy band structure and density of states of (CMA)2FAPb2I7 and (PEA)2FAPb2I7. c Relative changes of lattice parameters of (CMA)2FAPb2I7 and (PEA)2FAPb2I7 with pressure change. d Relative changes of the Pb-I bond length of (CMA)2FAPb2I7 and (PEA)2FAPb2I7 with pressure change. e Variation of the Pb-I-Pb bond angle of (CMA)2FAPb2I7 and (PEA)2FAPb2I7 with pressure change. f Variation of the bandgap of (CMA)2FAPb2I7 and (PEA)2FAPb2I7 with pressure change. g Schematic diagram of bond length change and bond angle change between metal and halide. h Structural optimization models of (CMA)2FAPb2I7 and (PEA)2FAPb2I7 at 0 GPa and 1 GPa
|
|
Fig. 3 a-c PL spectra at selected pressures of pristine 3D, 3D/2D-CMAI, and 3D/2D-PEAI. d-f Absorption spectra at different pressures with 3D, 3D/2D-CMAI, and 3D/2D-PEAI. g Schematic diagram of DAC pressure device. h-i PL intensity and wavelength as a function of pressure
|
|
Fig. 4 a, b Pseudo-color maps of temperature-dependent PL spectra of 3D/2D-CMAI and 3D/2D-PEAI from 20 to 77 K. c Derived carrier-LO phonon coupling strength as a function of temperature ranging from 20 to 77 K for 3D/2D-CMAI and 3D/2D-PEAI (top), phonon energies derived from the peak fitting to the PL emission spectra for 3D/2D-CMAI and 3D/2D-PEAI (bottom). d, e PL emission spectra of 3D/2D-CMAI and 3D/2D-PEAI measured at 20 and 298 K. f Temperature dependence of PL emission spectral width (FWHM) of 3D/2D-CMAI and 3D/2D-PEAI from 77 to 300 K. g, h HCs at delay times from 0.3 to 15 ps. i Hot electron temperature decay for 3D/2D-CMAI and 3D/2D-PEAI films
|
|
Fig. 5 a J-V characteristics of optimized PSCs and the corresponding schematic illustrating of rigid PSCs (inset). b EQE spectra and the integrated current density. c Stabilized power output (SPO) at maximum power point tracking under working conditions with 100 mW cm−2 irradiation. d J-V characteristics of optimized f-PSCs and the corresponding schematic illustration of f-PSCs (inset). e, f Light intensity-dependent VOC and JSC. g, h Trap concentration estimated by dark J-V curves. i Electrochemical impedance spectroscopy of PSCs and the corresponding equivalent circuit model (inset). j Mechanical test of the f-PSCs based on bending radius of 5 mm. k Maximum power point tracking (MPPT) of 3D devices and 3D/2D-CMAI, 3D/2D-PEAI devices under 1 sun illumination in the N2 environment
|
1. | D. Kim, H. Choi, W. Jung, C. Kim, E.Y. Park et al., Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells. Energy Environ. Sci. 16(5), 2045-2055 (2023). | 2. | Q.A. Akkerman, L. Manna, What defines a halide perovskite? ACS Energy Lett. 5, 604-610 (2020). | 3. | S. Wang, M.-H. Li, Y. Zhang, Y. Jiang, L. Xu et al., Surface n-type band bending for stable inverted CsPbI3 perovskite solar cells with over 20% efficiency. Energy Environ. Sci. 16, 2572-2578 (2023). | 4. | X.-B. Han, C.-Q. Jing, H.-Y. Zu, W. Zhang, Structural descriptors to correlate Pb ion displacement and broadband emission in 2D halide perovskites. J. Am. Chem. Soc. 144, 18595-18606 (2022). | 5. | B. Febriansyah, Y. Li, D. Giovanni, T. Salim, T.J.N. Hooper et al., Inorganic frameworks of low-dimensional perovskites dictate the performance and stability of mixed-dimensional perovskite solar cells. Mater. Horiz. 10, 536-546 (2023). | 6. | Y. An, C.A.R. Perini, J. Hidalgo, A.-F. Castro-Méndez, J.N. Vagott et al., Identifying high-performance and durable methylammonium-free lead halide perovskites via high-throughput synthesis and characterization. Energy Environ. Sci. 14, 6638-6654 (2021). | 7. | L. Cheng, K. Meng, Z. Qiao, Y. Zhai, R. Yu et al., Tailoring interlayer spacers for efficient and stable formamidinium-based low-dimensional perovskite solar cells. Adv. Mater. 34, e2106380 (2022). | 8. | R. Wang, A. Altujjar, N. Zibouche, X. Wang, B.F. Spencer et al., Improving the efficiency and stability of perovskite solar cells using π-conjugated aromatic additives with differing hydrophobicities. Energy Environ. Sci. 16, 2646-2657 (2023). | 9. | J. Kirman, A. Johnston, D.A. Kuntz, M. Askerka, Y. Gao et al., Machine-learning-accelerated perovskite crystallization. Matter 2, 938-947 (2020). | 10. | C. Ma, M.-C. Kang, S.-H. Lee, S.J. Kwon, H.-W. Cha et al., Photovoltaically top-performing perovskite crystal facets. Joule 6(11), 2626-2643 (2022). | 11. | C. Zhang, H. Li, C. Gong, Q. Zhuang, J. Chen et al., Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825-3836 (2023). | 12. | NREL Best Research-Cell Efficiencies. | 13. | Y. Wang, Y. Meng, C. Liu, R. Cao, B. Han et al., Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule (2024). | 14. | S.Y. Park, J.-S. Park, B.J. Kim, H. Lee, A. Walsh et al., Sustainable lead management in halide perovskite solar cells. Nat. Sustain. 3, 1044-1051 (2020). | 15. | J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). | 16. | D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44-60 (2020). | 17. | C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, 1902762 (2019). | 18. | W. Xu, Y. Gao, W. Ming, F. He, J. Li et al., Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 32, 2003965 (2020). | 19. | X. Li, X. Wu, B. Li, Z. Cen, Y. Shang et al., Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy Environ. Sci. 15, 4813-4822 (2022). | 20. | R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021). | 21. | W. Chu, Q. Zheng, O.V. Prezhdo, J. Zhao, W.A. Saidi, Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 6, eaaw7453 (2020). | 22. | X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Norman et al., Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089-2096 (2015). | 23. | X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini et al., Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550-556 (2018). | 24. | L.D. Whalley, P. van Gerwen, J.M. Frost, S. Kim, S.N. Hood et al., Giant Huang-rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 143, 9123-9128 (2021). | 25. | R. Shi, R. Long, W.-H. Fang, O.V. Prezhdo, Rapid interlayer charge separation and extended carrier lifetimes due to spontaneous symmetry breaking in organic and mixed Organic-Inorganic Dion-Jacobson perovskites. J. Am. Chem. Soc. 145, 5297-5309 (2023). | 26. | R. Shi, Z. Zhang, W.-H. Fang, R. Long, Charge localization control of electron-hole recombination in multilayer two-dimensional Dion-Jacobson hybrid perovskites. J. Mater. Chem. A 8, 9168-9176 (2020). | 27. | Y. Liu, H. Zhou, Y. Ni, J. Guo, R. Lu et al., Revealing stability origin of Dion-Jacobson 2D perovskites with different-rigidity organic cations. Joule 7(5), 1016-1032 (2023). | 28. | J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma et al., Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8, 14120 (2017). | 29. | J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). | 30. | S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). | 31. | S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456-1465 (2011). | 32. | S. Wang, Y. Liu, J. Zou, J. Jin, Y. Jiang et al., Intermediate phase assisted sequential deposition of reverse-graded quasi-2D alternating cation perovskites for MA-free perovskite solar cells. InfoMat 5, e12396 (2023). | 33. | B. Han, Y. Wang, C. Liu, K. Sun, M. Yang et al., Rational design of ferroelectric 2D perovskite for improving the efficiency of flexible perovskite solar cells over 23%. Angew. Chem. Int. Ed. 62, 2217526 (2023). | 34. | C. Liu, Z. Fang, J. Sun, M. Shang, K. Zheng et al., Donor-acceptor-donor type organic spacer for regulating the quantum wells of Dion-Jacobson 2D perovskites. Nano Energy 93, 106800 (2022). | 35. | J. Wu, S.-C. Liu, Z. Li, S. Wang, D.-J. Xue et al., Strain in perovskite solar cells: origins, impacts and regulation. Natl. Sci. Rev. 8, 047 (2021). | 36. | D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). | 37. | C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). | 38. | E.A. Duijnstee, B.M. Gallant, P. Holzhey, D.J. Kubicki, S. Collavini et al., Understanding the degradation of methylenediammonium and its role in phase-stabilizing formamidinium lead triiodide. J. Am. Chem. Soc. 145, 10275-10284 (2023). | 39. | P.K. Nayak, D.T. Moore, B. Wenger, S. Nayak, A.A. Haghighirad et al., Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016). | 40. | C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852-2867 (2016). | 41. | G. Liu, J. Gong, L. Kong, R.D. Schaller, Q. Hu et al., Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. U.S.A. 115, 8076-8081 (2018). | 42. | S. Guo, Y. Zhao, K. Bu, Y. Fu, H. Luo et al., Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7. Angew. Chem. Int. Ed. 59, 17533-17539 (2020). | 43. | S. Guo, K. Bu, J. Li, Q. Hu, H. Luo et al., Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features. J. Am. Chem. Soc. 143, 2545-2551 (2021). | 44. | S. Guo, Y. Li, Y. Mao, W. Tao, K. Bu et al., Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. Sci. Adv. 8, eadd1984 (2022). | 45. | A. Jaffe, Y. Lin, H.I. Karunadasa, Halide perovskites under pressure: accessing new properties through lattice compression. ACS Energy Lett. 2, 1549-1555 (2017). | 46. | H. Zhu, T. Cai, M. Que, J.-P. Song, B.M. Rubenstein et al., Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals. J. Phys. Chem. Lett. 9, 4199-4205 (2018). | 47. | S. Jiang, Y. Luan, J.I. Jang, T. Baikie, X. Huang et al., Phase transitions of formamidinium lead iodide perovskite under pressure. J. Am. Chem. Soc. 140, 13952-13957 (2018). | 48. | G. Feng, Y. Qin, C. Ran, L. Ji, L. Dong et al., Structural evolution and photoluminescence properties of a 2D hybrid perovskite under pressure. APL Mater. 6, 114201 (2018). | 49. | J. Fu, Q. Xu, G. Han, B. Wu, C.H.A. Huan et al., Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8, 1300 (2017). | 50. | M. Li, J. Fu, Q. Xu, T.C. Sum, Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, 1802486 (2019). | 51. | C.M. Iaru, J.J. Geuchies, P.M. Koenraad, D. Vanmaekelbergh, A.Y. Silov, Strong carrier-phonon coupling in lead halide perovskite nanocrystals. ACS Nano 11, 11024-11030 (2017). | 52. | K.K. Paul, J.-H. Kim, Y.H. Lee, Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 3, 178-192 (2021). | 53. | P. Zeng, X. Ren, L. Wei, H. Zhao, X. Liu et al., Control of hot carrier relaxation in CsPbBr3 nanocrystals using damping ligands. Angew. Chem. Int. Ed. 61, 2111443 (2022). | 54. | H. Zhao, H. Kalt, Energy-dependent huang-rhys factor of free excitons. Phys. Rev. B 68, 125309 (2003). | 55. | R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, D. Bimberg, Enhanced polar exciton-LO-phonon interaction in quantum dots. Phys. Rev. Lett. 83, 4654-4657 (1999). | 56. | Q. Wei, J. Yin, O.M. Bakr, Z. Wang, C. Wang et al., Effect of zinc-doping on the reduction of the hot-carrier cooling rate in halide perovskites. Angew. Chem. Int. Ed. 60, 10957-10963 (2021). | 57. | J. Yan, W. Zhang, S. Geng, C. Qiu, Y. Chu et al., Electronic state modulation by large A-site cations in quasi-two-dimensional organic-inorganic lead halide perovskites. Chem. Mater. 35, 289-294 (2023). | 58. | J.W.M. Lim, D. Giovanni, M. Righetto, M. Feng, S.G. Mhaisalkar et al., Hot carriers in halide perovskites: how hot truly? J. Phys. Chem. Lett. 11, 2743-2750 (2020). | 59. | C.A.R. Perini, A.-F. Castro-Mendez, T. Kodalle, M. Ravello, J. Hidalgo et al., Vapor-deposited n = 2 ruddlesden-popper interface layers aid charge carrier extraction in perovskite solar cells. ACS Energy Lett. 8, 1408-1415 (2023). | 60. | Y. Choi, D. Koo, G. Jeong, U. Kim, H. Kim et al., A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15, 3369-3378 (2022). | 61. | J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018). | 62. | Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63-71 (2021). |
|
No related articles found! |
|
|
|
|