|
|
TiO2 Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells |
Wenhao Zhao1, Pengfei Guo1,4( ), Jiahao Wu1, Deyou Lin1, Ning Jia1, Zhiyu Fang1, Chong Liu1, Qian Ye1, Jijun Zou3, Yuanyuan Zhou2, Hongqiang Wang1,4( ) |
1 State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an, 710072, People’s Republic of China 2 Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, People’s Republic of China 3 Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People’s Republic of China 4 Chongqing Innovation Center of Northwestern, Polytechnical University, Northwestern Polytechnical University, Chongqing, 401135, People’s Republic of China |
|
|
Abstract Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.
|
Received: 22 January 2024
Published: 03 May 2024
|
Corresponding Authors:
Pengfei Guo, Hongqiang Wang
|
|
|
|
1. | J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724-730 (2023). | 2. | S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399-1404 (2023). | 3. | Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557-563 (2023). | 4. | X. Ji, L. Bi, Q. Fu, B. Li, J. Wang et al., Target therapy for buried interface enables stable perovskite solar cells with 25.05% efficiency. Adv. Mater. 35, e2303665 (2023). | 5. | W. Zhao, P. Guo, C. Liu, N. Jia, Z. Fang et al., Laser derived electron transport layers with embedded p-n heterointerfaces enabling planar perovskite solar cells with efficiency over 25%. Adv. Mater. 35, e2300403 (2023). | 6. | D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). | 7. | J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji et al., Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573-578 (2022). | 8. | C. Luo, G. Zheng, F. Gao, X. Wang, C. Zhan et al., Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 17, 856-864 (2023). | 9. | M.M. Byranvand, T. Kim, S. Song, G. Kang, S.U. Ryu et al., P-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv. Energy Mater. 8, 1702235 (2018). | 10. | P. Cui, D. Wei, J. Ji, H. Huang, E. Jia et al., Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150-159 (2019). | 11. | P. Guo, H. Zhu, W. Zhao, C. Liu, L. Zhu et al., Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24. Adv. Mater. 33, e2101590 (2021). | 12. | H. Li, R. Zhang, Y. Li, Y. Li, H. Liu et al., Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells. Adv. Energy Mater. 8, 1802012 (2018). | 13. | S. Wang, L. Pan, J.-J. Song, W. Mi, J.-J. Zou et al., Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 137, 2975-2983 (2015). | 14. | F. Li, J. Jian, J. Zou, S. Wang, Z. Zhang et al., Bulk embedding of Ti-defected TiO2 nano-heterointerfaces in hematite photoanode for boosted photoelectrochemical water splitting. Chem. Eng. J. 473, 145254 (2023). | 15. | M. Gopal, W.J. Moberly Chan, L.C. De Jonghe, Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001-6008 (1997). | 16. | W. Hu, W. Zhou, X. Lei, P. Zhou, M. Zhang et al., Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater. 31, 1806095 (2019). | 17. | X. Wang, S. Shen, Z. Feng, C. Li, Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chin. J. Catal. 37, 2059-2068 (2016). | 18. | J. Zheng, Z. Lei, Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B Environ. 237, 1-8 (2018). | 19. | S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao et al., A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504-7512 (2017). | 20. | M. Liu, Y. Chen, C.-S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96-101 (2019). | 21. | P. Guo, C. Liu, X. Li, Z. Chen, H. Zhu et al., Laser manufactured nano-MXenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells. Adv. Energy Mater. 12, 2202395 (2022). | 22. | D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071-3078 (2016). | 23. | W. Zhao, P. Guo, J. Su, Z. Fang, N. Jia et al., Synchronous passivation of defects with low formation energies via terdentate anchoring enabling high performance perovskite solar cells with efficiency over 24%. Adv. Funct. Mater. 32, 2200534 (2022). | 24. | P. Guo, X. Yang, Q. Ye, J. Zhang, H. Wang et al., Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance. Adv. Energy Mater. 9, 1901341 (2019). | 25. | X. Gong, L. Guan, Q. Li, Y. Li, T. Zhang et al., Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application. Sci. Adv. 6, eaay5661 (2020). | 26. | J. Li, L. Xie, Z. Pu, C. Liu, M. Yang et al., The synergistic effect of pemirolast potassium on carrier management and strain release for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 33, 2301956 (2023). | 27. | L. Xie, X. Zhao, J. Wang, J. Li, C. Liu et al., Multifunctional anchoring of O-ligands for high-performance and stable inverted perovskite solar cells. InfoMat 5, e12379 (2023). | 28. | L. Xie, J. Liu, J. Li, C. Liu, Z. Pu et al., A deformable additive on defects passivation and phase segregation inhibition enables the efficiency of inverted perovskite solar cells over 24%. Adv. Mater. 35, 2302752 (2023). | 29. | J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381-385 (2021). | 30. | H. Huang, P. Cui, Y. Chen, L. Yan, X. Yue et al., 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule 6, 2186-2202 (2022). | 31. | M.A. Rahman, Numerical modeling of ultra-thin CuSbS2 heterojunction solar cell with TiO2 electron transport and CuAlO2: Mg BSF layers. Opt. Mater. Express 12, 2954-2973 (2022). | 32. | K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo et al., Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 28, 10718-10724 (2016). |
|
[1] |
Juan Zhang, Xiaofei Ji, Xiaoting Wang, Liujiang Zhang, Leyu Bi, Zhenhuang Su, Xingyu Gao, Wenjun Zhang, Lei Shi, Guoqing Guan, Abuliti Abudula, Xiaogang Hao, Liyou Yang, Qiang Fu, Alex K.-Y. Jen, Linfeng Lu. Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation[J]. Nano-Micro Letters, 2024, 16(1): 190-. |
[2] |
Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, Yulin Yang. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 171-. |
|
|
|
|