|
|
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation |
Juan Zhang1,3,5, Xiaofei Ji3( ), Xiaoting Wang3, Liujiang Zhang4, Leyu Bi2, Zhenhuang Su4, Xingyu Gao4, Wenjun Zhang6, Lei Shi6, Guoqing Guan1,8( ), Abuliti Abudula1, Xiaogang Hao7, Liyou Yang5, Qiang Fu2( ), Alex K.-Y. Jen2( ), Linfeng Lu3 |
1 Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan 2 Department of Materials Science and Engineering, Department of Chemistry, Hong Kong Institute for Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, People’s Republic of China 3 The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People’s Republic of China 4 Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People’s Republic of China 5 JINNENG Clean Energy Technology Ltd., Jinzhong, 030300, Shanxi, People’s Republic of China 6 Hangzhou Zhongneng Photoelectricity Technology Co., Ltd., Hangzhou, 310018, People’s Republic of China 7 College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, People’s Republic of China 8 Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki, 036-8561, Japan |
|
|
Abstract A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.
|
Received: 26 January 2024
Published: 02 May 2024
|
Corresponding Authors:
Xiaofei Ji, Guoqing Guan, Qiang Fu, Alex K.-Y. Jen
|
|
|
|
|
Fig. 1 Illustrations of common large-area perovskite deposition methods, including a solution-processing techniques (blade coating, slot die coating, and spray coating), b one-step thermal evaporation, and c two-step thermal evaporation techniques. d The strategy of the perovskite film preparation in this work: solid-liquid two-step film formation combined with target modification
|
|
Fig. 2 XPS spectra of a Ni 2p and b O 1s regions of NiOx and NiOx/CsBr film. c, d c-AFM images of c NiOx and d NiOx/CsBr film. The SEM images of PbI2 prepared by e blade coating and f vapor deposition, and g PbI2/CsBr film. h XRD patterns of PbI2 films (deposited by blade coating and vapor) and PbI2/CsBr film. i-k 2D GIWAXS patterns of corresponding PbI2 films. l Normalized integrated intensities of the PbI2 (001) planes are plotted as a function of the azimuthal angle
|
|
Fig. 3 a, b 2D GIWAXS patterns of pristine perovskite film (prepared by blade coating and solid-liquid deposition), and c the perovskite film modified with CsBr + Urea. Note that the modified perovskite films were prepared using a solid-liquid strategy. d-f SEM images of corresponding pristine and modified perovskite films. Heat maps of in situ PL for g PVSK/CsBr and h PVSK/CsBr + Urea
|
|
Fig. 4 a XRD patterns of perovskite films modified with buried CsBr and vary concentrate Urea. b PL and c TRPL spectra of the PVSK/CsBr and PVSK/CsBr + Urea films. XPS spectra of d N 1s, e O 1s, f Pb 4f, and g I 3d for PVSK/CsBr and PVSK/CsBr + Urea films. The KPFM images of h PVSK/CsBr and i PVSK/CsBr + Urea films
|
|
Fig. 5 a Configuration with a cross-section view of a solar module. b Photographs of PSM with a size of 10 × 10 cm2. c Optimized J − V curves of PSCs based on pristine PVSK/CsBr + Urea. d Plots of the PCE versus active area for PSMs with n-i-p and p-i-n type reported in the literature (see Table S3). e PCE distribution of 15 modules based on pristine perovskite, PVSK/CsBr, and PVSK/CsBr + Urea. f XRD patterns of the blade-coating PVSK and PVSK/CsBr + Urea films stored in the glove box at 85 °C. g PCE evolution of the unencapsulated PSMs based on blade-coating PVSK, solid-liquid PVSK, and PVSK/CsBr + Urea stored in the glove box at 85 °C. h PCE evolution of the unencapsulated PSCs based on blade-coating PVSK, solid-liquid PVSK, and PVSK/CsBr + Urea stored in N2 atmosphere under continuous irradiation (1 sun illumination, white light-emitting diode (LED), 100 mW cm−2)
|
Table 1 Photovoltaic parameters of PSMs based on PVSK (blade coating), PVSK (solid-liquid), PVSK/CsBr, and PVSK/CsBr + Urea Sample | Voc [V] | Jsc [mA cm−2] | FF [%] | PCE [%] | PCEaverage [%] | PVSK (blade coating) | 11.04 | 1.81 | 67.43 | 13.47 | 12.77 | PVSK (solid-liquid) | 11.14 | 1.86 | 76.34 | 15.81 | 14.97 | PVSK/CsBr | 11.25 | 1.98 | 78.39 | 17.43 | 16.57 | PVSK/CsBr + Urea | 12.05 | 2.11 | 80.87 | 20.56 | 19.53 |
|
Table 1 Photovoltaic parameters of PSMs based on PVSK (blade coating), PVSK (solid-liquid), PVSK/CsBr, and PVSK/CsBr + Urea
|
1. | M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302-306 (2022). | 2. | N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408-415 (2019). | 3. | Q. Fu, A.K.Y. Jen, Perovskite solar cell developments, what?s next? Next Energy 1, 100004 (2023). | 4. | T. Bu, J. Li, H. Li, C. Tian, J. Su et al., Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327-1332 (2021). | 5. | Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14, 5690-5722 (2021). | 6. | J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724-730 (2023). | 7. | Q. Feng, X. Huang, Z. Tang, Y. Hou, Q. Chang et al., Governing PbI6octahedral frameworks for high-stability perovskite solar modules. Energy Environ. Sci. 15, 4404-4413 (2022). | 8. | L. Chu, S. Zhai, W. Ahmad, J. Zhang, Y. Zang et al., High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 1, e9120024 (2022). | 9. | M. Du, S. Zhao, L. Duan, Y. Cao, H. Wang et al., Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 6, 1931-1943 (2022). | 10. | C. Fei, N. Li, M. Wang, X. Wang, H. Gu et al., Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823-829 (2023). | 11. | H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2: CsI layer. Nano-Micro Lett. 14, 79 (2022). | 12. | C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185-192 (2018). | 13. | Y.Y. Kim, S.M. Bang, J. Im, G. Kim, J.J. Yoo et al., Rationally designed eco-friendly solvent system for high-performance, large-area perovskite solar cells and modules. Adv. Sci. 10, e2300728 (2023). | 14. | S.M. Park, M. Wei, N. Lempesis, W. Yu, T. Hossain et al., Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289-294 (2023). | 15. | S. Wang, L. Tan, J. Zhou, M. Li, X. Zhao et al., Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells. Joule 6, 1344-1356 (2022). | 16. | F.U. Kosasih, E. Erdenebileg, N. Mathews, S.G. Mhaisalkar, Bruno thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 6, 2692-2734 (2022). | 17. | J. Li, H. Wang, X.Y. Chin, H.A. Dewi, K. Vergeer et al., Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule 4, 1035-1053 (2020). | 18. | H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022). | 19. | L. Tan, J. Zhou, X. Zhao, S. Wang, M. Li et al., Combined vacuum evaporation and solution process for high-efficiency large-area perovskite solar cells with exceptional reproducibility. Adv. Mater. 35, e2205027 (2023). | 20. | S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902-907 (2021). | 21. | H. Liu, M.-H. Yu, C.-C. Lee, X. Yu, Y. Li et al., Technical challenges and perspectives for the commercialization of solution-processable solar cells. Adv. Mater. Technol. 6, 2000960 (2021). | 22. | R. Wang, X. Dong, Y. Liu, Recent progress of inorganic hole-transport materials for perovskite solar cells. Chin. J. Chem. 41, 3373-3387 (2023). | 23. | C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759-1775 (2020). | 24. | C. Li, Y. Zhang, X. Zhang, P. Zhang, X. Yang et al., Efficient inverted perovskite solar cells with a fill factor over 86% via surface modification of the nickel oxide hole contact. Adv. Funct. Mater. 33, 2214774 (2023). | 25. | L. Li, X. Zhang, H. Zeng, X. Zheng, Y. Zhao et al., Thermally-stable and highly-efficient bi-layered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chem. Eng. J. 443, 136405 (2022). | 26. | L. Mao, T. Yang, H. Zhang, J. Shi, Y. Hu et al., Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34, e2206193 (2022). | 27. | Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284-289 (2023). | 28. | B. Sasi, K.G. Gopchandran, Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18, 115613 (2007). | 29. | S. Wang, Y. Li, J. Yang, T. Wang, B. Yang et al., Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells. Angew. Chem. Int. Ed. 61, e202116534 (2022). | 30. | H. Lee, W. Yang, J. Tan, Y. Oh, J. Park et al., Cu-doped NiOx as an effective hole-selective layer for a high-performance Sb2Se3 photocathode for photoelectrochemical water splitting. ACS Energy Lett. 4, 995-1003 (2019). | 31. | T. Zhou, Z. Xu, R. Wang, X. Dong, Q. Fu et al., Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 34, e2200705 (2022). | 32. | P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323-327 (2023). | 33. | K. Meng, X. Wang, Q. Xu, Z. Li, Z. Liu et al., In situ observation of crystallization dynamics and grain orientation in sequential deposition of metal halide perovskites. Adv. Funct. Mater. 29, 1902319 (2019). | 34. | X. Ji, L. Bi, Q. Fu, B. Li, J. Wang et al., Target therapy for buried interface enables stable perovskite solar cells with 25.05% efficiency. Adv. Mater. 35, e2303665 (2023). | 35. | W. Wang, T. Ghosh, H. Yan, I. Erofeev, K. Zhang et al., The growth dynamics of organic-inorganic metal halide perovskite films. J. Am. Chem. Soc. 144, 17848-17856 (2022). | 36. | L. Bi, Q. Fu, Z. Zeng, Y. Wang, F.R. Lin et al., Deciphering the roles of MA-based volatile additives for α-FAPbI3 to enable efficient inverted perovskite solar cells. J. Am. Chem. Soc. 145, 5920-5929 (2023). | 37. | Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable Dion-jacobson perovskite solar cells enabled by extended π-conjugation of organic spacer. Adv. Mater. 33, e2105083 (2021). | 38. | X. Ji, T. Zhou, Q. Fu, W. Wang, Z. Wu et al., Dopant-free two-dimensional hole transport small molecules enable efficient perovskite solar cells. Adv. Energy Mater. 13, 2203756 (2023). | 39. | X. Ji, T. Zhou, X. Ke, W. Wang, S. Wu et al., A mixed hole transport material employing a highly planar conjugated molecule for efficient and stable perovskite solar cells. J. Mater. Chem. A 8, 5163-5170 (2020). | 40. | P. Chen, Y. Xiao, L. Li, L. Zhao, M. Yu et al., Efficient inverted perovskite solar cells via improved sequential deposition. Adv. Mater. 35, 2206345 (2023). | 41. | P. Wang, B. Chen, R. Li, S. Wang, N. Ren et al., Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V. ACS Energy Lett. 6, 2121-2128 (2021). | 42. | H. Xu, Y. Miao, N. Wei, H. Chen, Z. Qin et al., CsI enhanced buried interface for efficient and UV-robust perovskite solar cells. Adv. Energy Mater. 12, 2103151 (2022). | 43. | T.J. Jacobsson, J.P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138, 10331-10343 (2016). | 44. | C. Jia, X. Xiang, J. Zhang, Z. He, Z. Gong et al., Shifting oxygen evolution reaction pathway via activating lattice oxygen in layered perovskite oxide. Adv. Funct. Mater. 33, 2301981 (2023). | 45. | X. Ji, K. Feng, S. Ma, J. Wang, Q. Liao et al., Interfacial passivation engineering for highly efficient perovskite solar cells with a fill factor over 83%. ACS Nano 16, 11902-11911 (2022). | 46. | Q. Fu, X. Tang, H. Liu, R. Wang, T. Liu et al., Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 144, 9500-9509 (2022). | 47. | Q. Fu, M. Chen, Q. Li, H. Liu, R. Wang et al., Selenophene-based 2D ruddlesden-popper perovskite solar cells with an efficiency exceeding 19%. J. Am. Chem. Soc. 145, 21687-21695 (2023). | 48. | Z. Song, J. Yang, X. Dong, R. Wang, Y. Dong et al., Inverted wide-bandgap 2D/3D perovskite solar cells with >22% efficiency and low voltage loss. Nano Lett. 23, 6705-6712 (2023). |
|
[1] |
Jingjing Liu, Biao Shi, Qiaojing Xu, Yucheng Li, Yuxiang Li, Pengfei Liu, Zetong SunLi, Xuejiao Wang, Cong Sun, Wei Han, Diannan Li, Sanlong Wang, Dekun Zhang, Guangwu Li, Xiaona Du, Ying Zhao, Xiaodan Zhang. Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide[J]. Nano-Micro Letters, 2024, 16(1): 189-. |
[2] |
Yirong Wang, Yaohui Cheng, Chunchun Yin, Jinming Zhang, Jingxuan You, Jizheng Wang, Jinfeng Wang, Jun Zhang. Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives[J]. Nano-Micro Letters, 2024, 16(1): 183-. |
|
|
|
|