1. |
|
2. |
|
3. |
|
4. |
G. Qu, K. Guo, W. Chen, Y. Du, Y. Wang et al., Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 6(4), 12502 ( 2023). https://doi.org/10.1002/eem2.12502
|
5. |
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 ( 2022). https://doi.org/10.1002/anie.202209350
|
6. |
X. Wang, Y. Yang, C. Lai, R. Li, H. Xu et al., Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem. Int. Ed. 60, 11359-11369 ( 2021). https://doi.org/10.1002/anie.202016240
|
7. |
|
8. |
Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 34, e2200102 ( 2022). https://doi.org/10.1002/adma.202200102
|
9. |
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 ( 2014). https://doi.org/10.1038/ncomms5759
|
10. |
H. Shao, W. Wang, H. Zhang, A. Wang, X. Chen et al., Nano-TiO 2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power. Sour. 378, 537-545 ( 2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
|
11. |
M. Zhao, H.-J. Peng, Z.-W. Zhang, B.-Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58, 3779-3783 ( 2019). https://doi.org/10.1002/anie.201812062
|
12. |
S. Li, W. Zhang, Z. Zeng, S. Cheng, J. Xie, Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium-sulfur batteries. Electrochem. Energy Rev. 3, 613-642 ( 2020). https://doi.org/10.1007/s41918-020-00072-5
|
13. |
|
14. |
X. Cui, X. Wang, Q. Pan, Achieving fast and stable Li + transport in lithium-sulfur battery via a high ionic conduction and high adhesion solid polymer electrolyte. Energy Mater. 3, 300034 ( 2023). https://doi.org/10.20517/energymater.2023.19
|
15. |
A. Le Mong, Y. Ahn, R. Puttaswamy, D. Kim, Pore filled solid electrolytes with high ionic conduction and electrochemical stability for lithium sulfur battery. Energy Mater. 3, 300035 ( 2023). https://doi.org/10.20517/energymater.2023.20
|
16. |
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 141, 3977-3985 ( 2019). https://doi.org/10.1021/jacs.8b12973
|
17. |
|
18. |
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d- p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 33, e2105947 ( 2021). https://doi.org/10.1002/adma.202105947
|
19. |
J. Yang, D.W. Kang, H. Kim, B. Hwang, J.W. Lee, CO 2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries. Chem. Eng. J. 451, 138909 ( 2023). https://doi.org/10.1016/j.cej.2022.138909
|
20. |
J. Yang, D.W. Kang, H. Kim, J.H. Park, W.Y. Choi et al., Fundamental role of Fe-N-C active sites in a CO 2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li-S batteries. J. Mater. Chem. A 9, 23660-23674 ( 2021). https://doi.org/10.1039/D1TA07415F
|
21. |
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO 2 reduction. Nat. Energy 5, 684-692 ( 2020). https://doi.org/10.1038/s41560-020-0667-9
|
22. |
Y. Zhong, Q. Wang, S.-M. Bak, S. Hwang, Y. Du et al., Identification and catalysis of the potential-limiting step in lithium-sulfur batteries. J. Am. Chem. Soc. 145, 7390-7396 ( 2023). https://doi.org/10.1021/jacs.2c13776
|
23. |
|
24. |
J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. U.S.A. 108, 937-943 ( 2011). https://doi.org/10.1073/pnas.1006652108
|
25. |
H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu et al., Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031-1036 ( 2016). https://doi.org/10.1126/science.aaf7680
|
26. |
C. Xiao, W. Song, J. Liang, J. Zhang, Z. Huang et al., P-block tin single atom catalyst for improved electrochemistry in a lithium-sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667-3677 ( 2022). https://doi.org/10.1039/D1TA09422J
|
27. |
|
28. |
|
29. |
|
30. |
|
31. |
L.S. Levitt,The photoelectric theory of photosynthesis. V. further correlation of the absorption spectrum of chlorophyll with the emission spectrum of magnesium. Appl. Spectrosc. 14(6), 161-164 ( 1960). https://doi.org/10.1366/000370260774614201
|
32. |
S.L. Yean, G. Wuenschell, J. Termini, R.J. Lin, Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881-884 ( 2000). https://doi.org/10.1038/35048617
|
33. |
S. Liu, Z. Li, C. Wang, W. Tao, M. Huang et al., Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 11, 938 ( 2020). https://doi.org/10.1038/s41467-020-14565-w
|
34. |
J. Su, C.B. Musgrave, Y. Song, L. Huang, Y. Liu et al., Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818-828 ( 2023). https://doi.org/10.1038/s41929-023-01005-3
|
35. |
I. Cojocariu, A. Windischbacher, D. Baranowski, M. Jugovac, R.C.C. Ferreira et al., Surface-mediated spin locking and thermal unlocking in a 2D molecular array. Adv. Sci. 10, e2300223 ( 2023). https://doi.org/10.1002/advs.202300223
|
36. |
|
37. |
R.R. Chen, Y. Sun, S.J.H. Ong, S. Xi, Y. Du et al., Antiferromagnetic inverse spinel oxide LiCoVO 4 with spin-polarized channels for water oxidation. Adv. Mater. 32, e1907976 ( 2020). https://doi.org/10.1002/adma.201907976
|
38. |
L. Zhang, A. Cheruvathur, C. Biz, M. Fianchini, J. Gracia, Ferromagnetic ligand holes in cobalt perovskite electrocatalysts as an essential factor for high activity towards oxygen evolution. Phys. Chem. Chem. Phys. 21, 2977-2983 ( 2019). https://doi.org/10.1039/c8cp07832g
|
39. |
C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61, e202211570 ( 2022). https://doi.org/10.1002/anie.202211570
|
40. |
Y. Jiao, R. Sharpe, T. Lim, J.W.H. Niemantsverdriet, J. Gracia, Photosystem II acts as a spin-controlled electron gate during oxygen formation and evolution. J. Am. Chem. Soc. 139, 16604-16608 ( 2017). https://doi.org/10.1021/jacs.7b07634
|
41. |
|
42. |
G. Qu, K. Guo, J. Dong, H. Huang, P. Yuan et al., Tuning Fe-spin state of FeN 4 structure by axial bonds as efficient catalyst in Li-S batteries. Energy Storage Mater. 55, 490-497 ( 2023). https://doi.org/10.1016/j.ensm.2022.12.011
|
43. |
J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO 2 electroreduction. Nano Res. 15, 10063-10069 ( 2022). https://doi.org/10.1007/s12274-022-4467-3
|
44. |
Z. Lin, H. Huang, L. Cheng, W. Hu, P. Xu et al., Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 33, e2107103 ( 2021). https://doi.org/10.1002/adma.202107103
|
45. |
S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai et al., Isolated single-atom Ni-N 5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 21, 9691-9698 ( 2021). https://doi.org/10.1021/acs.nanolett.1c03499
|
46. |
|
47. |
S.T. Ochsenbein, Y. Feng, K.M. Whitaker, E. Badaeva, W.K. Liu et al., Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nat. Nanotechnol. 4, 681-687 ( 2009). https://doi.org/10.1038/nnano.2009.221
|
48. |
L. Cai, J. He, Q. Liu, T. Yao, L. Chen et al., Vacancy-induced ferromagnetism of MoS 2 nanosheets. J. Am. Chem. Soc. 137, 2622-2627 ( 2015). https://doi.org/10.1021/ja5120908
|
49. |
C. Jia, S. Li, Y. Zhao, R.K. Hocking, W. Ren et al., Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO 2 reduction. Adv. Funct. Mater. 31, 2107072 ( 2021). https://doi.org/10.1002/adfm.202107072
|
50. |
S. Menzli, B. Ben Hamada, I. Arbi, A. Souissi, A. Laribi et al., Adsorption study of copper phthalocyanine on Si(111)(√3 × √3)R30°Ag surface. Appl. Surf. Sci. 369, 43-49 ( 2016). https://doi.org/10.1016/j.apsusc.2016.02.056
|
51. |
B. Kim, J.M. Beebe, Y. Jun, X.-Y. Zhu, C.D. Frisbie, Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970-4971 ( 2006). https://doi.org/10.1021/ja0607990
|
52. |
B. Kim, S.H. Choi, X.-Y. Zhu, C.D. Frisbie, Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: Effect of surface linking group and metal work function. J. Am. Chem. Soc. 133, 19864-19877 ( 2011). https://doi.org/10.1021/ja207751w
|
53. |
X. Wang, Y. Qian, L. Wang, H. Yang, H. Li et al., Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv. Funct. Mater. 29, 1902929 ( 2019). https://doi.org/10.1002/adfm.201902929
|
54. |
|
55. |
|
56. |
G. Cui, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 72, 104685 2020). https://doi.org/10.1016/j.nanoen.2020.104685
|
57. |
C. Li, W. Ge, S. Qi, L. Zhu, R. Huang et al., Manipulating electrocatalytic polysulfide redox kinetics by 1D core-shell like composite for lithium-sulfur batteries. Adv. Energy Mater. 12, 2103915 ( 2022). https://doi.org/10.1002/aenm.202103915
|
58. |
R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized Li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. 62, e202309046 ( 2023). https://doi.org/10.1002/anie.202309046
|
59. |
C.Y. Zhang, C. Zhang, J.L. Pan, G.W. Sun, Z. Shi et al., Surface strain-enhanced MoS 2 as a high-performance cathode catalyst for lithium-sulfur batteries. eScience 2, 405-415 ( 2022). https://doi.org/10.1016/j.esci.2022.07.001
|
60. |
P. Wang, X. Dai, P. Xu, S. Hu, X. Xiong et al., Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries. eScience 3, 100088 2023). https://doi.org/10.1016/j.esci.2022.100088
|
61. |
X. Xu, F. Li, D. Zhang, S. Ji, Y. Huo et al., Facile construction of CoSn/Co 3Sn 2@C nanocages as anode for superior lithium-/sodium-ion storage. Carbon Neutralization 2, 54-62 ( 2023). https://doi.org/10.1002/cnl2.40
|
62. |
L. Wang, H. Shi, Y. Xie, Z.-S. Wu, Boosting solid-solid conversion kinetics of sulfurized polyacrylonitrile via MoS 2 doping for high-rate and long-life Li-S batteries. Carbon Neutralization 2, 262-270 ( 2023). https://doi.org/10.1002/cnl2.61
|
63. |
J. Yan, Y. Wang, Y. Zhang, S. Xia, J. Yu et al., Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 33, e2007525 ( 2021). https://doi.org/10.1002/adma.202007525
|
64. |
J. Wen, N. Li, Q. Shi, H. Wu, X. Feng et al., First-principles calculations to investigate electronic structures and magnetic regulation of non-metallic elements doped BP with point defects. J. Mol. Graph. Model. 118, 108370 ( 2023). https://doi.org/10.1016/j.jmgm.2022.108370
|
65. |
|