210. |
H. Sun, M. Sun, Y. You, J. Xie, X. Xu et al., Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. Chem. Eng. J. 471, 144597 ( 2023). https://doi.org/10.1016/j.cej.2023.144597
|
211. |
Y. Qi, S. Ren, J. Ye, Y. Tian, G. Wang et al., Infection microenvironment-activated core-shell nanoassemblies for photothermal/chemodynamic synergistic wound therapy and multimodal imaging. Acta Biomater. 143, 445-458 ( 2022). https://doi.org/10.1016/j.actbio.2022.02.034
|
212. |
S. Suvarnapathaki, X. Wu, D. Lantigua, M.A. Nguyen, G. Camci-Unal, Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater. 11, 65 ( 2019). https://doi.org/10.1038/s41427-019-0166-2
|
213. |
|
214. |
|
215. |
|
216. |
M.A. Weigelt, H.A. Lev-Tov, M. Tomic-Canic, W.D. Lee, R. Williams et al., Advanced wound diagnostics: toward transforming wound care into precision medicine. Adv. Wound Care 11, 330-359 ( 2022). https://doi.org/10.1089/wound.2020.1319
|
217. |
J.R. Nakkala, Z. Li, W. Ahmad, K. Wang, C. Gao, Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater. 123, 1-30 ( 2021). https://doi.org/10.1016/j.actbio.2021.01.025
|
218. |
X. Huang, S. Zhang, Y. Tang, X. Zhang, Y. Bai et al., Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 449, 214216 ( 2021). https://doi.org/10.1016/j.ccr.2021.214216
|
219. |
|
220. |
|
221. |
|
222. |
D. Fan, X. Liu, Y. Ren, S. Bai, Y. Li et al., Functional insights to the development of bioactive material for combating bacterial infections. Front. Bioeng. Biotechnol. 11, 1186637 ( 2023). https://doi.org/10.3389/fbioe.2023.1186637
|
223. |
|
224. |
Á. Serrano-Aroca, A. Cano-Vicent, R. Sabater I Serra, M. El-Tanani, A. Aljabali et al., Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater. Today Bio 16, 100412 2022). https://doi.org/10.1016/j.mtbio.2022.100412
|
225. |
P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan et al., Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans.” Front. Microbiol. 9, 1441 ( 2018). https://doi.org/10.3389/fmicb.2018.01441
|
226. |
C. Xu, O.U. Akakuru, X. Ma, J. Zheng, J. Zheng et al., Nanoparticle-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug. Chem. 31, 1708-1723 ( 2020). https://doi.org/10.1021/acs.bioconjchem.0c00297
|
227. |
|
228. |
N. Bag, S. Bardhan, S. Roy, J. Roy, D. Mondal et al., Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater. Sci. 11, 1994-2019 ( 2023). https://doi.org/10.1039/d2bm01941h
|
229. |
J. Casqueiro, J. Casqueiro, C. Alves, Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J. Endocrinol. Metab. 16(Suppl 1), S27-S36 ( 2012). https://doi.org/10.4103/2230-8210.94253
|
230. |
C. Cai, H. Zhu, Y. Chen, Y. Guo, Z. Yang et al., Mechanoactive nanocomposite hydrogel to accelerate wound repair in movable parts. ACS Nano 16, 20044-20056 ( 2022). https://doi.org/10.1021/acsnano.2c07483
|
231. |
J. Shan, X. Zhang, B. Kong, Y. Zhu, Z. Gu et al., Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem. Eng. J. 444, 136640 ( 2022). https://doi.org/10.1016/j.cej.2022.136640
|
232. |
D.Y.M. Leung, M. Boguniewicz, M.D. Howell, I. Nomura, Q.A. Hamid, New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657 ( 2004). https://doi.org/10.1172/JCI21060
|
233. |
|
234. |
L.F. Eichenfield, W.L. Tom, T.G. Berger, A. Krol, A.S. Paller et al., Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol. 71, 116-132 ( 2014). https://doi.org/10.1016/j.jaad.2014.03.023
|
235. |
E.V. Ramos Campos, P.L.F. Proença, L. Doretto-Silva, V. Andrade-Oliveira, L.F. Fraceto et al., Trends in nanoformulations for atopic dermatitis treatment. Expert Opin. Drug Deliv. 17, 1615-1630 ( 2020). https://doi.org/10.1080/17425247.2020.1813107
|
236. |
|
237. |
G. Damiani, R. Eggenhöffner, P.D.M. Pigatto, N.L. Bragazzi, Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact. Mater. 4, 380-386 ( 2019). https://doi.org/10.1016/j.bioactmat.2019.11.003
|
238. |
Y. Jia, J. Hu, K. An, Q. Zhao, Y. Dang et al., Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat. Commun. 14, 2478 ( 2023). https://doi.org/10.1038/s41467-023-38209-x
|
239. |
L. Qiu, C. Ouyang, W. Zhang, J. Liu, L. Yu et al., Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J. Nanobiotechnol 21, 163 2023). https://doi.org/10.1186/s12951-023-01924-0
|
240. |
J.H. Kim, A.J. Kolozsvary, K.A. Jenrow, S.L. Brown, Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol. 89, 311-318 ( 2013). https://doi.org/10.3109/09553002.2013.765055
|
241. |
J. Wei, L. Meng, X. Hou, C. Qu, B. Wang et al., Radiation-induced skin reactions: mechanism and treatment. Cancer Manag. Res. 11, 167-177 ( 2018). https://doi.org/10.2147/CMAR.S188655
|
242. |
|
243. |
|
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
H. Sorg, D.J. Tilkorn, S. Hager, J. Hauser, U. Mirastschijski, Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58, 81-94 ( 2017). https://doi.org/10.1159/000454919
|
7. |
|
8. |
|
9. |
J. Wang, Y. Zhou, H. Zhang, L. Hu, J. Liu et al., Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct. Target. Ther. 8, 138 ( 2023). https://doi.org/10.1038/s41392-023-01344-4
|
10. |
A.Q. Khan, M.V. Agha, K.S.A.M. Sheikhan, S.M. Younis, M.A. Tamimi et al., Targeting deregulated oxidative stress in skin inflammatory diseases: an update on clinical importance. Biomed. Pharmacother. 154, 113601 ( 2022). https://doi.org/10.1016/j.biopha.2022.113601
|
11. |
|
12. |
|
13. |
J. Chen, Y. Fan, G. Dong, H. Zhou, R. Du et al., Designing biomimetic scaffolds for skin tissue engineering. Biomater. Sci. 11, 3051-3076 ( 2023). https://doi.org/10.1039/d3bm00046j
|
14. |
C. Yang, C. Yang, Y. Chen, J. Liu, Z. Liu et al., The trends in wound management: sensing, therapeutic treatment, and “theranostics.” J. Sci. Adv. Mater. Devices 8, 100619 2023). https://doi.org/10.1016/j.jsamd.2023.100619
|
15. |
G. Kaur, G. Narayanan, D. Garg, A. Sachdev, I. Matai, Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Appl. Bio Mater. 5, 2069-2106 ( 2022). https://doi.org/10.1021/acsabm.2c00035
|
16. |
|
17. |
F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering— In vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352-366 ( 2011). https://doi.org/10.1016/j.addr.2011.01.005
|
244. |
|
245. |
D. Zhou, M. Du, H. Luo, F. Ran, X. Zhao et al., Multifunctional mesoporous silica-cerium oxide nanozymes facilitate miR129 delivery for high-quality healing of radiation-induced skin injury. J. Nanobiotechnol 20, 409 2022). https://doi.org/10.1186/s12951-022-01620-5
|
246. |
|
247. |
|
248. |
|
249. |
D. Bei, J. Meng, B.-BB.-B C. Youan, Engineering nanomedicines for improved melanoma therapy. Progress and promises. Nanomedicine 5, 1385-1399 ( 2010). https://doi.org/10.2217/nnm.10.117
|
250. |
|
251. |
|
252. |
Z. Wu, H. Zhuang, B. Ma, Y. Xiao, B. Koc et al., Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing. Research 2021, 9780943 (2021). https://doi.org/10.34133/2021/9780943
|
253. |
|
254. |
|
255. |
W. Zhao, M.E.C. Robbins, Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 16, 130-143 ( 2009). https://doi.org/10.2174/092986709787002790
|
256. |
|
257. |
B. Babu, S. Pawar, A. Mittal, E. Kolanthai, C.J. Neal et al., Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1896 ( 2023). https://doi.org/10.1002/wnan.1896
|
258. |
J. Xie, M. Zhao, C. Wang, S. Zhu, W. Niu et al., External use of Nano-graphdiyne hydrogel for skin radioprotection via both physically shielding of Low-energy X-ray and chemically scavenging of Broad-spectrum free radicals. Chem. Eng. J. 430, 132866 ( 2022). https://doi.org/10.1016/j.cej.2021.132866
|
259. |
J. Hao, M. Sun, D. Li, T. Zhang, J. Li et al., An IFI 6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF 1 activity. J. Nanobiotechnology 20, 288 2022). https://doi.org/10.1186/s12951-022-01466-x
|
260. |
N.D. Evans, R.O. Oreffo, E. Healy, P.J. Thurner, Y.H. Man, Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28, 397-409 ( 2013). https://doi.org/10.1016/j.jmbbm.2013.04.023
|
18. |
|
19. |
A. Sinha, F.Z. Simnani, D. Singh, A. Nandi, A. Choudhury et al., The translational paradigm of nanobiomaterials: biological chemistry to modern applications. Mater. Today Bio 17, 100463 2022). https://doi.org/10.1016/j.mtbio.2022.100463
|
20. |
|
21. |
H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060-6093 ( 2013). https://doi.org/10.1039/C3CS35486E
|
22. |
|
23. |
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577-583 ( 2007). https://doi.org/10.1038/nnano.2007.260
|
24. |
H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57, 9224-9237 ( 2018). https://doi.org/10.1002/anie.201712469
|
25. |
Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 ( 2021). https://doi.org/10.1007/s40820-021-00674-8
|
26. |
Y. Ai, Z.-N. Hu, X. Liang, H.-B. Sun, H. Xin et al., Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32, 2110432 ( 2022). https://doi.org/10.1002/adfm.202110432
|
27. |
O. Bayaraa, K. Dashnyam, R.K. Singh, N. Mandakhbayar, J.H. Lee et al., Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials 292, 121914 2023). https://doi.org/10.1016/j.biomaterials.2022.121914
|
28. |
Patel, K.D., Patel, A.K., Kurian, A.G., Singh, R.K., Kim, H.-W.. Tuning the properties of inorganic nanomaterials for theranostic applications in infectious diseases: Carbon nanotubes, quantum dots, graphene, and mesoporous carbon nanoparticles. Nanotheranostics Treatment Diagn Infectious Dis, pp. 319-352 ( 2022). https://doi.org/10.1016/b978-0-323-91201-3.00011-6
|
29. |
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
|
261. |
|
262. |
|
263. |
|
264. |
M.G. Fernandes, L.P. da Silva, A.P. Marques, “Skin mechanobiology and biomechanics: From homeostasis to wound healing.” Advances in Biomechanics and Tissue Regeneration, (Elsevier, Amsterdam, 2019), pp. 343-360. https://doi.org/10.1016/b978-0-12-816390-0.00017-0
|
265. |
R. Ogawa, C.-K. Hsu, Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J. Cell. Mol. Med. 17, 817-822 ( 2013). https://doi.org/10.1111/jcmm.12060
|
266. |
L.S. Malakou, A.N. Gargalionis, C. Piperi, E. Papadavid, A.G. Papavassiliou et al., Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med. 6, 245 ( 2018). https://doi.org/10.21037/atm.2018.04.09
|
267. |
|
268. |
|
269. |
|
270. |
|
271. |
V.W. Wong, K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach et al., Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 18, 148-152 ( 2011). https://doi.org/10.1038/nm.2574
|
272. |
C.S. Nowell, P.D. Odermatt, L. Azzolin, S. Hohnel, E.F. Wagner et al., Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18, 168-180 ( 2016). https://doi.org/10.1038/ncb3290
|
273. |
J.M. Murphy, K. Jeong, D.L. Cioffi, P.M. Campbell, H. Jo et al., Focal adhesion kinase activity and localization is critical for TNF-α-induced nuclear factor-κB activation. Inflammation 44, 1130-1144 ( 2021). https://doi.org/10.1007/s10753-020-01408-5
|
274. |
|
275. |
|
276. |
L. Pontiggia, I.A. Van Hengel, A. Klar, D. Rütsche, M. Nanni et al., Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J. Tissue Eng. 13, 20417314221088510 ( 2022). https://doi.org/10.1177/20417314221088513
|
277. |
|
35. |
|
36. |
F. Kong, N. Mehwish, X. Niu, M. Lin, X. Rong et al., Personalized hydrogels for individual health care: preparation, features, and applications in tissue engineering. Mater. Today Chem. 22, 100612 ( 2021). https://doi.org/10.1016/j.mtchem.2021.100612
|
37. |
Khan M.U.A., Aslam M.A., Bin Abdullah M.F., Hasan A., Shah S.A. et al., Recent perspective of polymeric biomaterial in tissue engineering-a review. Mater. Today Chem. 34, 101818 ( 2023). https://doi.org/10.1016/j.mtchem.2023.101818
|
38. |
|
39. |
H. Wu, H. Liao, F. Li, J. Lee, P. Hu et al., Bioactive ROS-scavenging nanozymes for regenerative medicine: reestablishing the antioxidant firewall. Nano Sel. 1, 285-297 ( 2020). https://doi.org/10.1002/nano.202000021
|
40. |
|
41. |
S. Wang, H. Zheng, L. Zhou, F. Cheng, Z. Liu et al., Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 20, 5149-5158 ( 2020). https://doi.org/10.1021/acs.nanolett.0c01371
|
42. |
W. Li, Y. Bei, X. Pan, J. Zhu, Z. Zhang et al., Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater. Res. 27, 49 ( 2023). https://doi.org/10.1186/s40824-023-00367-w
|
43. |
Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H 2O 2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 ( 2022). https://doi.org/10.1038/s41467-022-34481-5
|
44. |
R. Baretta, V. Gabrielli, M. Frasconi, Nanozyme-cellulose hydrogel composites enabling cascade catalysis for the colorimetric detection of glucose. ACS Appl. Nano Mater. 5, 13845-13853 ( 2022). https://doi.org/10.1021/acsanm.2c01609
|
45. |
H. Wu, F. Li, W. Shao, J. Gao, D. Ling, Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent. Sci. 5, 477-485 ( 2019). https://doi.org/10.1021/acscentsci.8b00850
|
46. |
J. Zhuang, X. Zhang, Q. Liu, M. Zhu, X. Huang, Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 12, 6223-6241 ( 2022). https://doi.org/10.7150/thno.73421
|
47. |
Y. Ju, X. Liu, X. Ye, M. Dai, B. Fang et al., Nanozyme-based remodeling of disease microenvironments for disease prevention and treatment: a review. ACS Appl. Nano Mater. 6, 13792-13823 ( 2023). https://doi.org/10.1021/acsanm.3c02097
|
48. |
|
49. |
|
50. |
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS 2 dual nanozyme for bacteria-infected wound healing. Bioact. Mater. 9, 461-474 ( 2022). https://doi.org/10.1016/j.bioactmat.2021.07.023
|
51. |
X. Jin, W. Zhang, J. Shan, J. He, H. Qian et al., Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl. Mater. Interfaces 14, 50677-50691 ( 2022). https://doi.org/10.1021/acsami.2c17242
|
278. |
R.F. Pereira, A. Sousa, C.C. Barrias, A. Bayat, P.L. Granja et al., Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf. Rev. 2, 1 ( 2017). https://doi.org/10.1007/s40898-017-0003-8
|
279. |
T. Weng, W. Zhang, Y. Xia, P. Wu, M. Yang et al., 3D bioprinting for skin tissue engineering: Current status and perspectives. J. Tissue Eng. 12, 20417314211028576 ( 2021). https://doi.org/10.1177/20417314211028574
|
280. |
P. Chang, S. Li, Q. Sun, K. Guo, H. Wang et al., Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin. J. Tissue Eng. 13, 20417314211063024 ( 2022). https://doi.org/10.1177/20417314211063022
|
281. |
|
282. |
A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103, 2480-2487 ( 2006). https://doi.org/10.1073/pnas.0507681102
|
283. |
|
284. |
|
285. |
|
286. |
|
287. |
G.F. Goya, A. Mayoral, E. Winkler, R.D. Zysler, C. Bagnato et al., Next generation of nanozymes: a perspective of the challenges to match biological performance. J. Appl. Phys. 131(3), 190903 ( 2022). https://doi.org/10.1063/5.0084228
|
288. |
X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50, 8669-8742 ( 2021). https://doi.org/10.1039/d0cs00461h
|
289. |
S. Sindhwani, W.C.W. Chan, Nanotechnology for modern medicine: next step towards clinical translation. J. Intern. Med. 290, 486-498 ( 2021). https://doi.org/10.1111/joim.13254
|
290. |
X. Ding, Z. Zhao, Y. Zhang, M. Duan, C. Liu et al., Activity regulating strategies of nanozymes for biomedical applications. Small 19, e2207142 ( 2023). https://doi.org/10.1002/smll.202207142
|
291. |
|
292. |
M.A. Bhutkar, R.O. Sonawane. Translating nanomaterials from laboratory to clinic:Barriers ahead. In: Pardeshi, C.V. (eds) Nanomaterial-based drug delivery systems, (Springer, Cham, 2023), pp. 381-405. https://doi.org/10.1007/978-3-031-30529-0_13
|
293. |
M. Ghorbani, Z. Izadi, S. Jafari, E. Casals, F. Rezaei et al., Preclinical studies conducted on nanozyme antioxidants: shortcomings and challenges based on US FDA regulations. Nanomedicine 16, 1133-1151 ( 2021). https://doi.org/10.2217/nnm-2021-0030
|
294. |
|
52. |
|
53. |
L. Wang, F. Gao, A. Wang, X. Chen, H. Li et al., Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 32, e2005423 ( 2020). https://doi.org/10.1002/adma.202005423
|
54. |
Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514-528 ( 2019). https://doi.org/10.1016/j.jcis.2019.08.083
|
55. |
H. He, Z. Fei, T. Guo, Y. Hou, D. Li et al., Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials 280, 121272 2022). https://doi.org/10.1016/j.biomaterials.2021.121272
|
56. |
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy. Colloids Surf. B 210, 112230 2022). https://doi.org/10.1016/j.colsurfb.2021.112230
|
57. |
X. Wang, Q. Shi, Z. Zha, D. Zhu, L. Zheng et al., Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 6, 4389-4401 ( 2021). https://doi.org/10.1016/j.bioactmat.2021.04.024
|
58. |
X. Wang, X. Sun, T. Bu, Q. Wang, P. Jia et al., In situ fabrication of metal-organic framework derived hybrid nanozymes for enhanced nanozyme-photothermal therapy of bacteria-infected wounds. Compos. B Eng. 229, 109465 ( 2022). https://doi.org/10.1016/j.compositesb.2021.109465
|
59. |
A. Maleki, J. He, S. Bochani, V. Nosrati, M.-A. Shahbazi et al., Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895-18930 ( 2021). https://doi.org/10.1021/acsnano.1c08334
|
60. |
Q. Han, J.W. Lau, T.C. Do, Z. Zhang, B. Xing, Near-infrared light brightens bacterial disinfection: recent progress and perspectives. ACS Appl. Bio Mater. 4, 3937-3961 ( 2021). https://doi.org/10.1021/acsabm.0c01341
|
61. |
Y. He, X. Chen, Y. Zhang, Y. Wang, M. Cui et al., Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci. China Life Sci. 65, 184-192 ( 2022). https://doi.org/10.1007/s11427-020-1907-6
|
62. |
Shamsabadi A., Haghighi T., Carvalho S., Frenette L.C., Stevens M.M.. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater., e2300184 ( 2023). https://doi.org/10.1002/adma.202300184
|
63. |
K. Li, X. Yan, Y. Du, S. Chen, Y. You et al., Silk fibroin nanozyme hydrogel with self-supplied H 2O 2 for enhanced antibacterial therapy. ACS Appl. Nano Mater. 6, 9175-9185 ( 2023). https://doi.org/10.1021/acsanm.3c00528
|
64. |
Z.-Y. Liao, W.-W. Gao, N.-N. Shao, J.-M. Zuo, T. Wang et al., Iron phosphate nanozyme-hydrogel with multienzyme-like activity for efficient bacterial sterilization. ACS Appl. Mater. Interfaces 14, 18170-18181 ( 2022). https://doi.org/10.1021/acsami.2c02102
|
65. |
Z. Jia, X. Lv, Y. Hou, K. Wang, F. Ren et al., Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact. Mater. 6, 2676-2687 ( 2021). https://doi.org/10.1016/j.bioactmat.2021.01.033
|
66. |
|
67. |
Z. Chen, S. Song, H. Zeng, Z. Ge, B. Liu et al., 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 471, 144649 ( 2023). https://doi.org/10.1016/j.cej.2023.144649
|
68. |
I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 316-342 ( 2013). https://doi.org/10.5339/gcsp.2013.38
|
69. |
|
70. |
P. Dam, M. Celik, M. Ustun, S. Saha, C. Saha et al., Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv. 13, 21345-21364 ( 2023). https://doi.org/10.1039/D3RA03477A
|
71. |
D. Solanki, P. Vinchhi, M.M. Patel, Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS Omega 8, 8172-8189 ( 2023). https://doi.org/10.1021/acsomega.2c06806
|
72. |
Y.E. Kim, J. Kim, ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl. Mater. Interfaces 14(20), 23002-23021 ( 2021). https://doi.org/10.1021/acsami.1c18261
|
73. |
|
74. |
|
75. |
D. Chao, Q. Dong, Z. Yu, D. Qi, M. Li et al., Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J. Am. Chem. Soc. 144, 23438-23447 ( 2022). https://doi.org/10.1021/jacs.2c09663
|
76. |
|
77. |
H. Cheng, Z. Shi, K. Yue, X. Huang, Y. Xu et al., Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219-232 ( 2021). https://doi.org/10.1016/j.actbio.2021.02.002
|
78. |
Y. Yang, M. Li, G. Pan, J. Chen, B. Guo, Multiple stimuli-responsive nanozyme-based cryogels with controlled NO release as self-adaptive wound dressing for infected wound healing. Adv. Funct. Mater. 33, 2214089 ( 2023). https://doi.org/10.1002/adfm.202214089
|
79. |
|
80. |
H. Bai, Z. Ding, J. Qian, M. Jiang, D. Yao, AuPt nanoparticle-based injectable hydrogel as cascade nanozyme for accelerating bacteria-infected wound healing. ACS Appl. Nano Mater. 6, 17531-17538 ( 2023). https://doi.org/10.1021/acsanm.3c02693
|
81. |
M.H. Norahan, S.C. Pedroza-González, M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo de Santiago, Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 24, 197-235 ( 2022). https://doi.org/10.1016/j.bioactmat.2022.11.019
|
82. |
X. Xie, Y. Lei, Y. Li, M. Zhang, J. Sun et al., Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J. Colloid Interface Sci. 637, 20-32 ( 2023). https://doi.org/10.1016/j.jcis.2023.01.081
|
83. |
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Adaptive hydrogels based on nanozyme with dual-enhanced triple enzyme-like activities for wound disinfection and mimicking antioxidant defense system. Adv. Healthcare Mater. 11, e2101849 ( 2022). https://doi.org/10.1002/adhm.202101849
|
84. |
|
85. |
|
86. |
X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS 2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000-1014 ( 2023). https://doi.org/10.1016/j.matt.2023.01.001
|
87. |
|
88. |
L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962-15977 ( 2023). https://doi.org/10.1021/acsnano.3c04134
|
89. |
W. Zhang, X. Dai, X. Jin, M. Huang, J. Shan et al., Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties. Smart Mater. Med. 4, 134-145 ( 2023). https://doi.org/10.1016/j.smaim.2022.08.004
|
90. |
M. Xiao, Y. Lin, L. Mei, J. Liu, F. Wang, Ag/MoS 2 nanozyme hydrogel dressing with adhesion and self-healing properties for antibacterial applications. ACS Appl. Nano Mater. 6, 14563-14573 ( 2023). https://doi.org/10.1021/acsanm.3c02816
|
91. |
A.G. Kurian, R.K. Singh, J.H. Lee, H.W. Kim, Surface-engineered hybrid gelatin methacryloyl with nanoceria as reactive oxygen species responsive matrixes for bone therapeutics. ACS Appl. Bio Mater. 5, 1130-1138 ( 2022). https://doi.org/10.1021/acsabm.1c01189
|
92. |
R.K. Singh, D.S. Yoon, N. Mandakhbayar, C. Li, A.G. Kurian et al., Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials 288, 121732 2022). https://doi.org/10.1016/j.biomaterials.2022.121732
|
93. |
A.G. Kurian, N. Mandakhbayar, R.K. Singh, J.H. Lee, G. Jin et al., Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater. Today Bio 20, 100664 2023). https://doi.org/10.1016/j.mtbio.2023.100664
|
94. |
|
95. |
|
96. |
A.M. Villalba-Rodríguez, L.Y. Martínez-Zamudio, S.A.H. Martínez, J.A. Rodríguez-Hernández, E.M. Melchor-Martínez et al., Nanomaterial constructs for catalytic applications in biomedicine: nanobiocatalysts and nanozymes. Top. Catal. 66, 707-722 ( 2023). https://doi.org/10.1007/s11244-022-01766-4
|
97. |
R. Qiao, Y. Cong, M. Ovais, R. Cai, C. Chen et al., Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Rep. Phys. Sci. 4, 101453 ( 2023). https://doi.org/10.1016/j.xcrp.2023.101453
|
98. |
|
99. |
|
100. |
D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 48, 3683-3704 ( 2019). https://doi.org/10.1039/c8cs00718g
|
101. |
R.G. Mahmudunnabi, F.Z. Farhana, N. Kashaninejad, S.H. Firoz, Y.-B. Shim et al., Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 145, 4398-4420 ( 2020). https://doi.org/10.1039/d0an00558d
|
102. |
|
103. |
|
104. |
|
105. |
P. Mishra, J. Lee, D. Kumar, R.O. Louro, N. Costa et al., Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater. 32, 2108650 ( 2022). https://doi.org/10.1002/adfm.202108650
|
106. |
|
107. |
J. Zhao, X. Cai, W. Gao, L. Zhang, D. Zou et al., Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 10, 26108-26117 ( 2018). https://doi.org/10.1021/acsami.8b10345
|
108. |
J. Sheng, Y. Wu, H. Ding, K. Feng, Y. Shen et al., Multienzyme-like nanozymes: Regulation, rational design, and application. Adv. Mater., 2211210 ( 2023). https://doi.org/10.1002/adma.202211210
|
109. |
|
110. |
|
111. |
Z. Lyu, S. Ding, D. Du, K. Qiu, J. Liu et al., Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185, 114269 ( 2022). https://doi.org/10.1016/j.addr.2022.114269
|
112. |
S. Ding, J.A. Barr, Z. Lyu, F. Zhang, M. Wang et al., Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater., e2209633 ( 2023). https://doi.org/10.1002/adma.202209633
|
113. |
L. Tonoyan, D. Montagner, R. Friel, V. O’Flaherty, Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochem. Pharmacol. 182, 114281 ( 2020). https://doi.org/10.1016/j.bcp.2020.114281
|
114. |
S. Zhang, Z. Yang, J. Hao, F. Ding, Z. Li et al., Hollow nanosphere-doped bacterial cellulose and polypropylene wound dressings: Biomimetic nanocatalyst mediated antibacterial therapy. Chem. Eng. J. 432, 134309 ( 2022). https://doi.org/10.1016/j.cej.2021.134309
|
115. |
X. Ren, L. Chang, Y. Hu, X. Zhao, S. Xu et al., Au@MOFs used as peroxidase-like catalytic nanozyme for bacterial infected wound healing through bacterial membranes disruption and protein leakage promotion. Mater. Des. 229, 111890 ( 2023). https://doi.org/10.1016/j.matdes.2023.111890
|
116. |
|
117. |
A. Nandi, L.J. Yan, C.K. Jana, N. Das, Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019, 9613090 (2019). https://doi.org/10.1155/2019/9613090
|
118. |
|
119. |
J. Zhu, Q. Han, Q. Li, F. Wang, M. Dong et al., A multi-enzyme-like activity exhibiting mussel-inspired nanozyme hydrogel for bacteria-infected wound healing. Biomater. Sci. 11, 2711-2725 ( 2023). https://doi.org/10.1039/d2bm02004a
|
120. |
|
121. |
W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4, 7451-7458 ( 2010). https://doi.org/10.1021/nn102592h
|
122. |
|
123. |
|
124. |
|
125. |
Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac Trends Anal. Chem. 105, 218-224 ( 2018). https://doi.org/10.1016/j.trac.2018.05.012
|
126. |
J. Chen, S. Zhang, X. Chen, L. Wang, W. Yang, A self-assembled fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application. Chemistry 28, e202104247 ( 2022). https://doi.org/10.1002/chem.202104247
|
127. |
Z. Zhou, X. Mei, K. Hu, M. Ma, Y. Zhang, Nanohybrid double network hydrogels based on a platinum nanozyme composite for antimicrobial and diabetic wound healing. ACS Appl. Mater. Interfaces 15, 17612-17626 ( 2023). https://doi.org/10.1021/acsami.3c00459
|
128. |
Y. Zhang, X. Hu, J. Shang, W. Shao, L. Jin et al., Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 12, 5995-6020 ( 2022). https://doi.org/10.7150/thno.73681
|
129. |
|
130. |
H. Zhao, R. Zhang, X. Yan, K. Fan, Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9, 6939-6957 ( 2021). https://doi.org/10.1039/d1tb00720c
|
131. |
C. Xu, X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 ( 2014). https://doi.org/10.1038/am.2013.88
|
132. |
V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.-F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce 3+ surface area concentration. Nanoscale 10, 6971-6980 ( 2018). https://doi.org/10.1039/c8nr00325d
|
133. |
Y. Li, R. Fu, Z. Duan, C. Zhu, D. Fan, Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction. Small 18, e2200165 ( 2022). https://doi.org/10.1002/smll.202200165
|
134. |
|
135. |
|
136. |
C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007(10), 1056-1058 ( 2007). https://doi.org/10.1039/b615134e
|
137. |
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, A redox modulatory Mn 3 O 4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56, 14267-14271 ( 2017). https://doi.org/10.1002/anie.201708573
|
138. |
S. Ghosh, P. Roy, N. Karmodak, E.D. Jemmis, G. Mugesh, Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V 2O 5 nanomaterials. Angew. Chem. Int. Ed. 57, 4510-4515 ( 2018). https://doi.org/10.1002/anie.201800681
|
139. |
S.V. Somerville, Q. Li, J. Wordsworth, S. Jamali, M.R. Eskandarian et al., Approaches to improving the selectivity of nanozymes. Adv. Mater., e2211288 ( 2023). https://doi.org/10.1002/adma.202211288
|
140. |
K. Fan, H. Wang, J. Xi, Q. Liu, X. Meng et al., Optimization of Fe 3O 4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53, 424-427 ( 2017). https://doi.org/10.1039/C6CC08542C
|
141. |
D. Zhang, N. Shen, J. Zhang, J. Zhu, Y. Guo et al., A novel nanozyme based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase activity. RSC Adv. 10, 8685-8691 ( 2020). https://doi.org/10.1039/c9ra10262k
|
142. |
X. Liu, W. Wei, Q. Yuan, X. Zhang, N. Li et al., Apoferritin-CeO 2 nano-truffle that has excellent artificial redox enzyme activity. Chem. Commun. 48, 3155-3157 ( 2012). https://doi.org/10.1039/C1CC15815E
|
143. |
C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous Cu xO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141, 1091-1099 ( 2019). https://doi.org/10.1021/jacs.8b11856
|
144. |
W. Wu, L. Huang, E. Wang, S. Dong, Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11, 9741-9756 ( 2020). https://doi.org/10.1039/d0sc03522j
|
145. |
|
146. |
D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W.Q. Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11, 357 ( 2020). https://doi.org/10.1038/s41467-019-14199-7
|
147. |
|
148. |
|
149. |
|
150. |
|
151. |
J. Xi, G. Wei, L. An, Z. Xu, Z. Xu et al., Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 19, 7645-7654 ( 2019). https://doi.org/10.1021/acs.nanolett.9b02242
|
152. |
Y. Huang, Z. Liu, C. Liu, E. Ju, Y. Zhang et al., Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55, 6646-6650 ( 2016). https://doi.org/10.1002/anie.201600868
|
153. |
X.-Q. Zhang, S.-W. Gong, Y. Zhang, T. Yang, C.-Y. Wang et al., Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 20, 5110-5116 ( 2010). https://doi.org/10.1039/C0JM00174K
|
154. |
J. Zhuang, A.C. Midgley, Y. Wei, Q. Liu, D. Kong et al., Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater., e2210848 ( 2023). https://doi.org/10.1002/adma.202210848
|
155. |
|
156. |
C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592-8600 ( 2022). https://doi.org/10.1021/acs.nanolett.2c03119
|
157. |
|
158. |
C. Tu, H. Lu, T. Zhou, W. Zhang, L. Deng et al., Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286, 121597 2022). https://doi.org/10.1016/j.biomaterials.2022.121597
|
159. |
Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthcare Mater. 11, e2201524 ( 2022). https://doi.org/10.1002/adhm.202201524
|
160. |
X. Han, S. Chen, Z. Cai, Y. Zhu, W. Yi et al., A diagnostic and therapeutic hydrogel to promote vascularization via blood sugar reduction for wound healing (adv. funct. mater. 14/2023). Adv. Funct. Mater. 33, 2370085 ( 2023). https://doi.org/10.1002/adfm.202370085
|
161. |
W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 ( 2022). https://doi.org/10.1002/adma.202207961
|
162. |
Y. Li, D. Wang, J. Wen, P. Yu, J. Liu et al., Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano 15, 19672-19683 ( 2021). https://doi.org/10.1021/acsnano.1c06983
|
163. |
S. Wang, Y. Zhang, F. Sun, K. Xi, Z. Sun et al., Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 225, 111557 ( 2023). https://doi.org/10.1016/j.matdes.2022.111557
|
164. |
M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 2022). https://doi.org/10.1016/j.biomaterials.2022.121790
|
165. |
Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang et al., Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 29, 1900518 ( 2019). https://doi.org/10.1002/adfm.201900518
|
166. |
Y. Li, P. Yu, J. Wen, H. Sun, D. Wang et al., Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts. Adv. Funct. Mater. 32, 2110720 ( 2022). https://doi.org/10.1002/adfm.202110720
|
167. |
|
168. |
M. Tian, L. Zhou, C. Fan, L. Wang, X. Lin et al., Bimetal-organic framework/GO x-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomater. 158, 252-265 ( 2023). https://doi.org/10.1016/j.actbio.2022.12.049
|
169. |
X. Wang, X. Sun, T. Bu, Q. Wang, H. Zhang et al., Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds. Acta Biomater. 135, 342-355 ( 2021). https://doi.org/10.1016/j.actbio.2021.08.022
|
170. |
Y. Peng, D. He, X. Ge, Y. Lu, Y. Chai et al., Construction of heparin-based hydrogel incorporated with Cu 5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 6, 3109-3124 ( 2021). https://doi.org/10.1016/j.bioactmat.2021.02.006
|
295. |
|
296. |
|
297. |
R. Kumari, D.S. Dkhar, S. Mahapatra, R. Kumar, P. Chandra, Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem. J. 180, 107615 ( 2022). https://doi.org/10.1016/j.microc.2022.107615
|
171. |
D. Dong, Z. Cheng, T. Wang, X. Wu, C. Ding et al., Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. Int. J. Biol. Macromol. 234, 123745 ( 2023). https://doi.org/10.1016/j.ijbiomac.2023.123745
|
172. |
X. Wang, Q. Song, B. Sun, W. Xu, S. Shi et al., Bacteria-targeting nanozyme with NIR-II photothermal enhanced catalytic effect for antibacterial therapy and promoting burn healing. Colloids Surf. A Physicochem. Eng. Aspects 674, 131902 2023). https://doi.org/10.1016/j.colsurfa.2023.131902
|
173. |
X. Liu, Y. Gao, R. Chandrawati, L. Hosta-Rigau, Therapeutic applications of multifunctional nanozymes. Nanoscale 11, 21046-21060 ( 2019). https://doi.org/10.1039/c9nr06596b
|
174. |
Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang et al., Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 9, e435 ( 2017). https://doi.org/10.1038/am.2017.171
|
175. |
|
176. |
|
177. |
|
178. |
M. Ghorbani, H. Derakhshankhah, S. Jafari, S. Salatin, M. Dehghanian et al., Nanozyme antioxidants as emerging alternatives for natural antioxidants: achievements and challenges in perspective. Nano Today 29, 100775 2019). https://doi.org/10.1016/j.nantod.2019.100775
|
179. |
|
180. |
|
181. |
|
182. |
|
183. |
M. Pasparakis, I. Haase, F.O. Nestle, Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289-301 ( 2014). https://doi.org/10.1038/nri3646
|
184. |
|
185. |
D. Laveti, M. Kumar, R. Hemalatha, R. Sistla, V.G.M. Naidu et al., Anti-inflammatory treatments for chronic diseases: a review. Inflamm. Allergy Drug Targets 12, 349-361 ( 2013). https://doi.org/10.2174/18715281113129990053
|
186. |
W. Badri, K. Miladi, Q.A. Nazari, H. Greige-Gerges, H. Fessi et al., Encapsulation of NSAIDs for inflammation management: overview, progress, challenges and prospects. Int. J. Pharm. 515, 757-773 ( 2016). https://doi.org/10.1016/j.ijpharm.2016.11.002
|
187. |
Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 ( 2020). https://doi.org/10.1126/sciadv.abb2695
|
188. |
|
189. |
|
190. |
S. Zhu, B. Zhao, M. Li, H. Wang, J. Zhu et al., Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact. Mater. 26, 306-320 ( 2023). https://doi.org/10.1016/j.bioactmat.2023.03.005
|
191. |
|
192. |
J. Larouche, S. Sheoran, K. Maruyama, M.M. Martino, Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care 7, 209-231 ( 2018). https://doi.org/10.1089/wound.2017.0761
|
193. |
|
194. |
|
195. |
|
196. |
|
197. |
M. Liu, D. He, T. Yang, W. Liu, L. Mao et al., An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy. J. Nanobiotechnology 16, 23 2018). https://doi.org/10.1186/s12951-018-0348-z
|
198. |
Z. Ahmadian, H. Gheybi, M. Adeli, Efficient wound healing by antibacterial property: advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol. 73, 103458 ( 2022). https://doi.org/10.1016/j.jddst.2022.103458
|
199. |
M.H. Kang, H.Y. Yu, G.-T. Kim, J.E. Lim, S. Jang et al., Near-infrared-emitting nanoparticles activate collagen synthesis via TGFβ signaling. Sci. Rep. 10, 13309 ( 2020). https://doi.org/10.1038/s41598-020-70415-1
|
200. |
P. Li, B. Li, C. Wang, X. Zhao, Y. Zheng et al., In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Compos. Part B Eng. 252, 110506 ( 2023). https://doi.org/10.1016/j.compositesb.2023.110506
|
201. |
|
202. |
H. Zhu, J. Zheng, X.Y. Oh, C.Y. Chan, B.Q.L. Low et al., Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano 17, 7953-7978 ( 2023). https://doi.org/10.1021/acsnano.2c12448
|
203. |
C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden et al., Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 14, 89-96 ( 2017). https://doi.org/10.1111/iwj.12557
|
204. |
|
205. |
M. Xu, F. Tan, W. Luo, Y. Jia, Y. Deng et al., In situ fabrication of silver peroxide hybrid ultrathin co-based metal-organic frameworks for enhanced chemodynamic antibacterial therapy. ACS Appl. Mater. Interfaces 15, 22985-22998 ( 2023). https://doi.org/10.1021/acsami.3c03863
|
206. |
T. Wang, D. Dong, T. Chen, J. Zhu, S. Wang et al., Acidity-responsive cascade nanoreactor based on metal-nanozyme and glucose oxidase combination for starving and photothermal-enhanced chemodynamic antibacterial therapy. Chem. Eng. J. 446, 137172 ( 2022). https://doi.org/10.1016/j.cej.2022.137172
|
207. |
Y. Zheng, W. Wang, Y. Gao, W. Wang, R. Zhang et al., Nanosonosensitizers-engineered injectable thermogel for augmented chemo-sonodynamic therapy of melanoma and infected wound healing. Mater. Today Bio 20, 100621 2023). https://doi.org/10.1016/j.mtbio.2023.100621
|
208. |
H. Huang, Y. Su, C. Wang, B. Lei, X. Song et al., Injectable tissue-adhesive hydrogel for photothermal/chemodynamic synergistic antibacterial and wound healing promotion. ACS Appl. Mater. Interfaces 15, 2714-2724 ( 2023). https://doi.org/10.1021/acsami.2c19566
|
209. |
W. Zhu, Y.-Q. Liu, P. Liu, J. Cao, A.-G. Shen et al., Blood-glucose-depleting hydrogel dressing as an activatable photothermal/chemodynamic antibacterial agent for healing diabetic wounds. ACS Appl. Mater. Interfaces 15, 24162-24174 ( 2023). https://doi.org/10.1021/acsami.3c03786
|