1. |
|
2. |
D. Yu, E. Nagelli, F. Du, L. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1(14), 2165-2173 ( 2010). https://doi.org/10.1021/jz100533t
|
3. |
|
4. |
H. Piao, G. Choi, X. Jin, S.-J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14(1), 55 ( 2022). https://doi.org/10.1007/s40820-022-00794-9
|
5. |
|
6. |
Y. Wu, P. Xiong, J. Wu, Z. Huang, J. Sun et al., Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution. Nano-Micro Lett. 13(1), 48 ( 2021). https://doi.org/10.1007/s40820-020-00571-6
|
7. |
|
8. |
K. Srinivas, D. Liu, F. Ma, A. Chen, Z. Zhang et al., Defect-engineered mesoporous undoped carbon nanoribbons for benchmark oxygen reduction reaction. Small 19(4), e2301589 ( 2023). https://doi.org/10.1002/smll.202301589
|
9. |
Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao et al., Linkage microenvironment of azoles-related covalent organic frameworks precisely regulates photocatalytic generation of hydrogen peroxide. Angew. Chem. Int. Ed. 62(36), e202309480 ( 2023). https://doi.org/10.1002/anie.202309480
|
10. |
H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215-225 ( 2018). https://doi.org/10.1016/j.watres.2018.07.025
|
11. |
X. Yan, B. Wang, J. Ren, X. Long, D. Yang, An unsaturated bond strategy to regulate active centers of metal-free covalent organic frameworks for efficient oxygen reduction. Angew. Chem. Int. Ed. 61(46), e202209583 ( 2022). https://doi.org/10.1002/anie.202209583
|
12. |
X. Long, D. Li, B. Wang, Z. Jiang, W. Xu et al., Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 58(33), 11369-11373 ( 2019). https://doi.org/10.1002/anie.201905468
|
13. |
Z. Zhao, B. Wang, Z. You, Q. Zhang, W. Song et al., Heterocyclic modulated electronic states of alkynyl-containing conjugated microporous polymers for efficient oxygen reduction. Small 19(17), e2207298 ( 2023). https://doi.org/10.1002/smll.202207298
|
14. |
Z. You, B. Wang, Z. Zhao, Q. Zhang, W. Song et al., Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv. Mater. 35(7), e2209129 ( 2023). https://doi.org/10.1002/adma.202209129
|
15. |
|
16. |
F. He, Y. Wang, J. Liu, X. Yao, One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration 3, 20220164 2023). https://doi.org/10.1002/EXP.20220164
|
17. |
S. Zhao, X. Lu, L. Wang, J. Gale, R. Amal, Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 31(13), e1805367 ( 2019). https://doi.org/10.1002/adma.201805367
|
18. |
|
19. |
|
20. |
J.J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114(20), 10613-10653 ( 2014). https://doi.org/10.1021/cr5002436
|
21. |
S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Carbocatalysis by graphene-based materials. Chem. Rev. 114(12), 6179-6212 ( 2014). https://doi.org/10.1021/cr4007347
|
22. |
R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3d heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), e1805598 ( 2019). https://doi.org/10.1002/adma.201805598
|
23. |
Z. Komeily-Nia, L.-T. Qu, J.-L. Li, Progress in the understanding and applications of the intrinsic reactivity of graphene-based materials. Small Sci. 1(2), 2000026 ( 2020). https://doi.org/10.1002/smsc.202000026
|
24. |
F. Zoller, S. Haringer, D. Bohm, J. Luxa, Z. Sofer et al., Carbonaceous oxygen evolution reaction catalysts: From defect and doping-induced activity over hybrid compounds to ordered framework structures. Small 17(48), e2007484 ( 2021). https://doi.org/10.1002/smll.202007484
|
25. |
K. Choi, S. Kim, Theoretical study of oxygen reduction reaction mechanism in metal-free carbon materials: defects, structural flexibility, and chemical reaction. ACS Nano 16(10), 16394-16401 ( 2022). https://doi.org/10.1021/acsnano.2c05607
|
26. |
A.N. Eledath, A. Edathiparambil Poulose, A. Muthukrishnan, O-functionalization of n-doped reduced graphene oxide for topological defect-driven oxygen reduction. ACS Appl. Nano Mater. 5(8), 10528-10536 ( 2022). https://doi.org/10.1021/acsanm.2c01852
|
27. |
R. Rabeya, S. Mahalingam, A. Manap, M. Satgunam, M. Akhtaruzzaman et al., Structural defects in graphene quantum dots: a review. Int. J. Quantum Chem. 122(12), e26900 ( 2022). https://doi.org/10.1002/qua.26900
|
28. |
Z.H. Sun, X. Zhang, X.D. Yang, W.N. Shi, Y.Q. Huang et al., Identification of a pyrone-type species as the active site for the oxygen reduction reaction. Chem. Commun. 58(64), 8998-9001 ( 2022). https://doi.org/10.1039/d2cc03093d
|
29. |
|
30. |
S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33(42), e2103133 ( 2021). https://doi.org/10.1002/adma.202103133
|
31. |
G. Gan, S. Fan, X. Li, J. Wang, C. Bai et al., Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 11(22), 14284-14292 ( 2021). https://doi.org/10.1021/acscatal.1c03701
|
32. |
A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH 3 production. Nano-Micro Lett. 14(1), 214 ( 2022). https://doi.org/10.1007/s40820-022-00966-7
|
33. |
J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Metal-free heteroatom-doped carbon-based catalysts for ORR: a critical assessment about the role of heteroatoms. Carbon 165, 434-454 ( 2020). https://doi.org/10.1016/j.carbon.2020.04.068
|
34. |
|
35. |
|
36. |
V. Likodimos, S. Glenis, C. Lin, Electronic properties of boron-doped multiwall carbon nanotubes studied by Esr and static magnetization. Phys. Rev. B 72(4), 045436 ( 2005). https://doi.org/10.1103/PhysRevB.72.045436
|
37. |
J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl et al., Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322(5898), 73-77 ( 2008). https://doi.org/10.1126/science.1161916
|
38. |
W. Xia, C. Jin, S. Kundu, M. Muhler, A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 47(3), 919-922 ( 2009). https://doi.org/10.1016/j.carbon.2008.12.026
|
39. |
|
40. |
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760-764 ( 2009). https://doi.org/10.1126/science.1168049
|
41. |
W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng et al., Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 1570-1574 ( 2014). https://doi.org/10.1002/anie.201307319
|
42. |
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin n doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the Orr, OER and HER. Energy Environ. Sci. 12, 322-333 ( 2019). https://doi.org/10.1039/C8EE03276A
|
43. |
Q. Lv, W. Si, J. He, L. Sun, C. Zhang et al., Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 9, 3376 ( 2018). https://doi.org/10.1038/s41467-018-05878-y
|
44. |
H. Xu, J. Yang, R. Ge, J. Zhang, Y. Li et al., Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: optimization strategies and mechanistic analysis. J. Energy Chem. 71, 234-265 ( 2022). https://doi.org/10.1016/j.jechem.2022.03.022
|
45. |
|
46. |
S. Park, J. Kim, K. Kwon, A review on biomass-derived n-doped carbons as electrocatalysts in electrochemical energy applications. Chem. Eng. J. 446, 137116 ( 2022). https://doi.org/10.1016/j.cej.2022.137116
|
47. |
Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang et al., Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J. Energy Chem. 44, 106-114 ( 2020). https://doi.org/10.1016/j.jechem.2019.09.019
|
48. |
H.B. Yang, J. Miao, S.-F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in n-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), e1501122 ( 2016). https://doi.org/10.1126/sciadv.1501122
|
49. |
L. Chen, Y. Hernandez, X. Feng, K. Müllen, From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 5(31), 7640-7654 ( 2012). https://doi.org/10.1002/anie.201201084
|
50. |
L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 ( 2018). https://doi.org/10.1038/s41467-018-06279-x
|
51. |
R. Panico, W. Powell, J.-C. Richer, A Guide to IUPAC Nomenclature of Organic Compounds: Recommendations 1993 (Blackwell Scientific Publications, Oxford, 1993)
|
52. |
E.M. Adkins, J.H. Miller, Towards a taxonomy of topology for polynuclear aromatic hydrocarbons: linking electronic and molecular structure. Phys. Chem. Chem. Phys. 19(41), 28458-28469 ( 2017). https://doi.org/10.1039/c7cp06048c
|
53. |
L. Zhi, K. Müllen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472-1484 ( 2008). https://doi.org/10.1039/B717585J
|
54. |
P. Puschnig, D. Lüftner, Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: from graphene to polycyclic aromatic hydrocarbon molecules. J. Electron Spectros. Relat. Phenom. 200, 193-208 ( 2015). https://doi.org/10.1016/j.elspec.2015.06.003
|
55. |
|
56. |
M. Pykal, P. Jurečka, F. Karlický, M. Otyepka, Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 18(9), 6351-6372 ( 2016). https://doi.org/10.1039/C5CP03599F
|
57. |
Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan et al., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2(8), 688-695 ( 2019). https://doi.org/10.1038/s41929-019-0297-4
|
58. |
H. Wu, C. Su, R. Tandiana, C. Liu, C. Qiu et al., Graphene-oxide-catalyzed direct CH-CH-type cross-coupling: the intrinsic catalytic activities of zigzag edges. Angew. Chem. Int. Ed. 57, 10848 ( 2018). https://doi.org/10.1002/anie.201802548
|
59. |
S. Fujii, T. Enoki, Nanographene and graphene edges: electronic structure and nanofabrication. Acc. Chem. Res. 46(10), 2202-2210 ( 2013). https://doi.org/10.1021/ar300120y
|
60. |
|
61. |
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136(11), 4394-4403 ( 2014). https://doi.org/10.1021/ja500432h
|
62. |
Article CAS PubMed PubMed Central S. Lu, Y. Shi, W. Zhou, Z. Zhang, F. Wu et al., Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 144(7), 3250-3258 ( 2022). https://doi.org/10.1021/jacs.1c13374
|
63. |
S. Lu, C. Cheng, Y. Shi, Z. Zhang, B. Zhang, Unveiling structure transformation and activity origin of the heteroatom-doped carbons for hydrogen evolution. Proc. Natl. Acad. Sci. 120(20), e2300549120 ( 2023). https://doi.org/10.1073/pnas.2300549120
|
64. |
Article CAS PubMed PubMed Central H. Li, F. Pan, C. Qin, T. Wang K.J. Chen, Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis. Adv. Energy Mater. 13(28), 2301378 ( 2023). https://doi.org/10.1002/aenm.202301378
|
65. |
Z. Wang, M. Cheng, Y. Liu, Z. Wu, H. Gu et al., Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem. Int. Ed. 62(22), e202301483 ( 2023). https://doi.org/10.1002/anie.202301483
|
66. |
|
67. |
Book E.K. Rideal, W.M Wright, Wrigh, Clxxxiv—low temperature oxidation at charcoal surfaces. Part I. The behaviour of charcoal in the absence of promoters. J. Chem. Soc. Trans. 127, 1347 ( 1925). https://doi.org/10.1039/CT9252701347
|
68. |
X. Guo, W. Qi, W. Liu, P. Yan, F. Li et al., Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catal. 7(2), 1424-1427 ( 2017). https://doi.org/10.1021/acscatal.6b02936
|
69. |
|
70. |
Y. Lin, X. Sun, D.S. Su, G. Centi, S. Perathoner, Catalysis by hybrid sp2/ sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 47, 8438-8473 ( 2018). https://doi.org/10.1039/C8CS00684A
|
71. |
J.L. Figueiredo, M.F. Pereira, M.M. Freitas, J.J. Órfão, Characterization of active sites on carbon catalysts. Ind. Eng. Chem. Res. 46(12), 4110-4115 ( 2007). https://doi.org/10.1021/ie061071v
|
72. |
J. Zhang, X. Wang, Q. Su, L. Zhi, A. Thomas et al., Metal-free phenanthrenequinone cyclotrimer as an effective heterogeneous catalyst. J. Am. Chem. Soc. 131(32), 11296-11297 ( 2009). https://doi.org/10.1021/ja9046735
|
73. |
Y. Lin, Z. Liu, Y. Niu, B. Zhang, Q. Lu et al., Highly efficient metal-free nitrogen-doped nanocarbons with unexpected active sites for aerobic catalytic reactions. ACS Nano 13(12), 13995-14004 ( 2019). https://doi.org/10.1021/acsnano.9b05856
|
74. |
A.D. Zdetsis, E.N. Economou, A pedestrian approach to the aromaticity of graphene and nanographene: Significance of huckel’s (4 n+2) π electron rule. J. Phys. Chem. C 119(29), 16991-17003 ( 2015). https://doi.org/10.1021/acs.jpcc.5b04311
|
75. |
J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl et al., Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis. Angew. Chem. Int. Ed. 46(38), 7319-7323 ( 2007). https://doi.org/10.1002/anie.200702466
|
76. |
X. Guo, W. Qi, W. Liu, C. Liang, A. Zheng et al., Conjugated polymers with defined chemical structure as model carbon catalysts for nitro reduction. RSC Adv. 6(101), 99570-99576 ( 2016). https://doi.org/10.1039/C6RA18201A
|
77. |
E. Louis, E. San-Fabián, G. Chiappe, J.A. Vergés, Electron enrichment of zigzag edges in armchair-oriented graphene nano-ribbons increases their stability and induces pinning of the fermi level. Carbon 154, 211-218 ( 2019). https://doi.org/10.1016/j.carbon.2019.07.102
|
78. |
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361-365 ( 2016). https://doi.org/10.1126/science.aad0832
|
79. |
Y. Lin, Z. Liu, L. Yu, G.-R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: Identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299-3306 ( 2021). https://doi.org/10.1002/anie.202012615
|
80. |
K. Takeyasu, M. Furukawa, Y. Shimoyama, S.K. Singh, J. Nakamura, Role of pyridinic nitrogen in the mechanism of the oxygen reduction reaction on carbon electrocatalysts. Angew. Chem. Int. Ed. 60(10), 5121-5124 ( 2021). https://doi.org/10.1002/anie.202014323
|
81. |
R. Shibuya, T. Kondo, J. Nakamura, Bottom-up design of nitrogen-containing carbon catalysts for the oxygen reduction reaction. ChemCatChem 10(9), 2019-2023 ( 2018). https://doi.org/10.1002/cctc.201701928
|
82. |
R.J. Kahan, W. Hirunpinyopas, J. Cid, M.J. Ingleson, R.A. Dryfe, Well-defined boron/nitrogen-doped polycyclic aromatic hydrocarbons are active electrocatalysts for the oxygen reduction reaction. Chem. Mater. 31(6), 1891-1898 ( 2019). https://doi.org/10.1002/cctc.201701928
|
83. |
M. Wang, B. Wang, W. Song, X. Wang, X. Peng et al., Oxygen reduction activity of B←N-Containing organic molecule affected by asymmetric regulation. Small 18(3), 2105524 ( 2022). https://doi.org/10.1002/smll.202105524
|
84. |
D. Li, B. Wang, X. Long, W. Xu, Y. Xia et al., Controlled asymmetric charge distribution of active centers in conjugated polymers for oxygen reduction. Angew. Chem. Int. Ed. 60(51), 26483-26488 ( 2021). https://doi.org/10.1002/anie.202109057
|
85. |
H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282-290 ( 2018). https://doi.org/10.1038/s41929-018-0044-2
|
86. |
Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1(2), 156-162 ( 2018). https://doi.org/10.1038/s41929-017-0017-x
|
87. |
G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H 2O 2. Nat. Commun. 11(1), 2209 ( 2020). https://doi.org/10.1038/s41467-020-15782-z
|
88. |
L. Yu, L. Tang, W. Guo, C. Li, D. Shin et al., Disclosing the natures of carbon edges with gradient nanocarbons for electrochemical hydrogen peroxide production. Matter 5(6), 1909-1923 ( 2022). https://doi.org/10.1016/j.matt.2022.04.010
|
89. |
Y. Lin, K.-H. Wu, Q. Lu, Q. Gu, L. Zhang et al., Electrocatalytic water oxidation at quinone-on-carbon: a model system study. J. Am. Chem. Soc. 140(44), 14717-14724 ( 2018). https://doi.org/10.1021/jacs.8b07627
|
90. |
Z. Gu, Y. Chen, Z. Wei, L. Qian, A.M. Al-Enizi et al., Precise tuning of heteroatom positions in polycyclic aromatic hydrocarbons for electrocatalytic nitrogen fixation. J. Colloid Interface Sci. 580, 623-629 ( 2020). https://doi.org/10.1016/j.jcis.2020.07.046
|