1. |
|
2. |
X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877-1892 ( 2018). https://doi.org/10.1016/j.chempr.2018.05.002
|
3. |
Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 ( 2018). https://doi.org/10.1038/s41467-018-06077-5
|
4. |
X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 ( 2017). https://doi.org/10.1002/adfm.201605989
|
5. |
Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94-106 ( 2022). https://doi.org/10.1038/s41560-021-00962-y
|
6. |
Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang et al., Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934-945 ( 2023). https://doi.org/10.1038/s41560-023-01282-z
|
7. |
Z. Yu, D.G. Mackanic, W. Michaels, M. Lee, A. Pei et al., A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761-2776 ( 2019). https://doi.org/10.1016/j.joule.2019.07.025
|
8. |
W. Yu, J. Yang, J. Li, K. Zhang, H. Xu et al., Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, e2102083 ( 2021). https://doi.org/10.1002/adma.202102083
|
9. |
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450-4456 ( 2013). https://doi.org/10.1021/ja312241y
|
10. |
Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961-969 ( 2014). https://doi.org/10.1038/nmat4041
|
11. |
H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140, 17515-17521 ( 2018). https://doi.org/10.1021/jacs.8b08963
|
12. |
J. Yang, M. Li, Z. Sun, X. Lian, Y. Wang et al., Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase. Energy Environ. Sci. 16, 3837-3846 ( 2023). https://doi.org/10.1039/D3EE00161J
|
13. |
C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422-9429 ( 2019). https://doi.org/10.1021/jacs.9b05029
|
14. |
|
15. |
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 ( 2018). https://doi.org/10.1002/aenm.201702097
|
16. |
|
17. |
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 ( 2022). https://doi.org/10.1016/j.cpc.2021.108171
|
18. |
H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338-7364 ( 1998). https://doi.org/10.1021/jp980939v
|
19. |
H. Sun, Z. Jin, C. Yang, R.L.C. Akkermans, S.H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 ( 2016). https://doi.org/10.1007/s00894-016-2909-0
|
20. |
R.E. Isele-Holder, W. Mitchell, A.E. Ismail, Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. J. Chem. Phys. 137, 174107 ( 2012). https://doi.org/10.1063/1.4764089
|
21. |
B. Shi, S. Sinha, V.K. Dhir, Molecular dynamics simulation of the density and surface tension of water by particle-particle particle-mesh method. J. Chem. Phys. 124, 204715 ( 2006). https://doi.org/10.1063/1.2199849
|
22. |
G.S. Larsen, P. Lin, K.E. Hart, C.M. Colina, Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44, 6944-6951 ( 2011). https://doi.org/10.1021/ma200345v
|
23. |
N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6, 1839-1848 ( 2021). https://doi.org/10.1021/acsenergylett.1c00365
|
24. |
|
25. |
R. Xu, X. Shen, X.-X. Ma, C. Yan, X.-Q. Zhang et al., Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface. Angew. Chem. Int. Ed. Engl. 60, 4215-4220 ( 2021). https://doi.org/10.1002/anie.202013271
|
26. |
D.W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin, B.G. Kim, Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO 3 content. J. Power Sour. 490, 229504 ( 2021). https://doi.org/10.1016/j.jpowsour.2021.229504
|
27. |
K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 ( 2016). https://doi.org/10.1038/nenergy.2016.10
|
28. |
|
29. |
|
30. |
C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055-14059 ( 2018). https://doi.org/10.1002/anie.201807034
|
31. |
D. Liu, X. Xiong, Q. Liang, X. Wu, H. Fu, An inorganic-rich SEI induced by LiNO 3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 57, 9232-9235 ( 2021). https://doi.org/10.1039/D1CC03676A
|
32. |
Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 34, e2108400 ( 2022). https://doi.org/10.1002/adma.202108400
|
33. |
X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, e2007945 ( 2021). https://doi.org/10.1002/adma.202007945
|
34. |
Q. Zhao, N.W. Utomo, A.L. Kocen, S. Jin, Y. Deng et al., Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61, e202116214 ( 2022). https://doi.org/10.1002/anie.202116214
|
35. |
L. Fu, X. Wang, L. Wang, M. Wan, Y. Li et al., A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling. Adv. Funct. Mater. 31, 2010602 ( 2021). https://doi.org/10.1002/adfm.202010602
|
36. |
Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. Engl. 59, 3505-3510 ( 2020). https://doi.org/10.1002/anie.201914250
|
37. |
S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries. Angew. Chem. Int. Ed. 59, 14935-14941 ( 2020). https://doi.org/10.1002/anie.202004853
|
38. |
Z. Guo, X. Song, Q. Zhang, N. Zhan, Z. Hou et al., Cationic size effect promoting dissolution of nitrate anion in ester electrolyte for lithium-metal batteries. ACS Energy Lett. 7, 569-576 ( 2022). https://doi.org/10.1021/acsenergylett.1c02495
|
39. |
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, et al., An Anion-Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes. Adv. Energy Mater. 10, 1903843 ( 2020). https://doi.org/10.1002/aenm.201903843
|
40. |
X. Wang, H. Wang, M. Liu, W. Li, In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism. Small 16, e2000769 ( 2020). https://doi.org/10.1002/smll.202000769
|
41. |
H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang et al., Dissolution-precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 6, 1413-1421 ( 2021). https://doi.org/10.1021/acsenergylett.1c00149
|
42. |
J. Chen, Z. Sun, Z. Li, J. Liu, X. Yao et al., Highly reversible Li metal anode using a binary alloy interface. Chem. Commun. 58, 13455-13458 ( 2022). https://doi.org/10.1039/d2cc05051j
|
43. |
D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li +-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16, 2004688 ( 2020). https://doi.org/10.1002/smll.202004688
|
44. |
P. Xiao, R. Luo, Z. Piao, C. Li, J. Wang et al., High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry. ACS Energy Lett. 6, 3170-3179 ( 2021). https://doi.org/10.1021/acsenergylett.1c01528
|
45. |
K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li + in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411-7421 ( 2007). https://doi.org/10.1021/jp068691u
|
46. |
X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59, 7743-7747 ( 2020). https://doi.org/10.1002/anie.202000375
|
47. |
P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou et al., Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction. Angew. Chem. Int. Ed. 61, 2202731 ( 2022). https://doi.org/10.1002/anie.202202731
|
48. |
W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 ( 2022). https://doi.org/10.1038/s41467-022-29761-z
|