1. |
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 ( 2020). https://doi.org/10.1038/s41467-020-17301-6
|
2. |
F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu et al., Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 ( 2020). https://doi.org/10.1038/s41467-020-17619-1
|
3. |
|
4. |
Y.-T. Kwon, Y.-S. Kim, S. Kwon, M. Mahmood, H.-R. Lim et al., All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 ( 2020). https://doi.org/10.1038/s41467-020-17288-0
|
5. |
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14, 225 ( 2022). https://doi.org/10.1007/s40820-022-00965-8
|
6. |
R. Xu, M. She, J. Liu, S. Zhao, J. Zhao et al., Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS Nano 17, 8293-8302 ( 2023). https://doi.org/10.1021/acsnano.2c12612
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
|
12. |
C. Cheng, J. Zhang, S. Li, Y. Xia, C. Nie et al., A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv. Mater. 30, 1705452 ( 2018). https://doi.org/10.1002/adma.201705452
|
13. |
|
14. |
|
15. |
X. Qi, H. Zhao, L. Wang, F. Sun, X. Ye et al., Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 437, 135382 ( 2022). https://doi.org/10.1016/j.cej.2022.135382
|
16. |
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 ( 2022). https://doi.org/10.1007/s40820-022-00806-8
|
17. |
R. Xu, M. She, J. Liu, S. Zhao, H. Liu et al., Breathable kirigami-shaped ionotronic e-textile with touch/strain sensing for friendly epidermal electronics. Adv. Fiber Mater. 4, 1525-1534 ( 2022). https://doi.org/10.1007/s42765-022-00186-z
|
18. |
S. Park, S. Ahn, J. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29, 1808369 ( 2019). https://doi.org/10.1002/adfm.201808369
|
19. |
|
20. |
S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14, 115 ( 2022). https://doi.org/10.1007/s40820-022-00858-w
|
21. |
X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15, 124 ( 2023). https://doi.org/10.1007/s40820-023-01094-6
|
22. |
M. Li, Z. Li, X. Ye, X. Zhang, L. Qu et al., Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl. Mater. Interfaces 13, 17110-17117 ( 2021). https://doi.org/10.1021/acsami.1c02329
|
23. |
|
24. |
|
25. |
D.S. Saidina, N. Eawwiboonthanakit, M. Mariatti, S. Fontana, C. Hérold, Recent development of graphene-based ink and other conductive material-based inks for flexible electronics. J. Electron. Mater. 48, 3428-3450 ( 2019). https://doi.org/10.1007/s11664-019-07183-w
|
26. |
J.R. Camargo, L.O. Orzari, D.A.G. Araújo, P.R. de Oliveira, C. Kalinke et al., Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 164, 105998 ( 2021). https://doi.org/10.1016/j.microc.2021.105998
|
27. |
|
28. |
|
29. |
L. Teng, S. Ye, S. Handschuh-Wang, X. Zhou, T. Gan et al., Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 29, 1808739 ( 2019). https://doi.org/10.1002/adfm.201808739
|
30. |
Y.-H. Wu, Z.-F. Deng, Z.-F. Peng, R.-M. Zheng, S.-Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29, 1903840 ( 2019). https://doi.org/10.1002/adfm.201903840
|
31. |
B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 ( 2019). https://doi.org/10.1002/adfm.201901370
|
32. |
L. Zheng, M. Zhu, B. Wu, Z. Li, S. Sun et al., Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 7, ebag4041 ( 2021). https://doi.org/10.1126/sciadv.abg4041
|
33. |
Y. Lin, Y. Liu, J. Genzer, M.D. Dickey, Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 8, 3832-3837 ( 2017). https://doi.org/10.1039/C7SC00057J
|
34. |
Y. Liu, W. Zhang, H. Wang, Synthesis and application of core-shell liquid metal particles: a perspective of surface engineering. Mater. Horiz. 8, 56-77 ( 2021). https://doi.org/10.1039/D0MH01117G
|
35. |
Y. Xin, H. Peng, J. Xu, J. Zhang, Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 29, 1808989 ( 2019). https://doi.org/10.1002/adfm.201808989
|
36. |
X. Li, M. Li, L. Zong, X. Wu, J. You et al., Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv. Funct. Mater. 28, 1804197 ( 2018). https://doi.org/10.1002/adfm.201804197
|
37. |
|
38. |
|
39. |
K. Chiou, S. Byun, J. Kim, J. Huang, Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols. Proc. Natl. Acad. Sci. U. S. A. 115, 5703-5708 ( 2018). https://doi.org/10.1073/pnas.1800298115
|
40. |
|
41. |
S. Hussain, Z. Ji, A.J. Taylor, L.M. DeGraff, M. George et al., Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano 10, 7675-7688 ( 2016). https://doi.org/10.1021/acsnano.6b03013
|
42. |
C. Li, S. Bolisetty, K. Chaitanya, J. Adamcik, R. Mezzenga, Tunable carbon nanotube/protein core-shell nanoparticles with NIR- and enzymatic-responsive cytotoxicity. Adv. Mater. 25, 1010-1015 ( 2013). https://doi.org/10.1002/adma.201203382
|
43. |
X. Liang, H. Li, J. Dou, Q. Wang, W. He et al., Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, e2000165 ( 2020). https://doi.org/10.1002/adma.202000165
|
44. |
R.I. Kunz, R.M. Brancalhão, L.F. Ribeiro, M.R. Natali, Silkworm sericin: properties and biomedical applications. BioMed Res. Int. 2016, 8175701 (2016). https://doi.org/10.1155/2016/8175701
|
45. |
|
46. |
|
47. |
V. Mouriño, P. Newby, F. Pishbin, J.P. Cattalini, S. Lucangioli et al., Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. Soft Matter 7, 6705-6712 ( 2011). https://doi.org/10.1039/C1SM05331K
|
48. |
V. Jost, M. Reinelt, Effect of Ca 2+ induced crosslinking on the mechanical and barrier properties of cast alginate films. J. Appl. Polym. Sci. 135, 45754 ( 2018). https://doi.org/10.1002/app.45754
|
49. |
I.D. Tevis, L.B. Newcomb, M. Thuo, Synthesis of liquid core-shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE). Langmuir 30, 14308-14313 ( 2014). https://doi.org/10.1021/la5035118
|
50. |
H. Wang, B. Yuan, S. Liang, R. Guo, W. Rao et al., PLUS-M: a porous liquid-metal enabled ubiquitous soft material. Mater. Horiz. 5, 222-229 ( 2018). https://doi.org/10.1039/C7MH00989E
|
51. |
|
52. |
T.-T. Cao, Y.-Q. Zhang, The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 49, 1029-1039 ( 2017). https://doi.org/10.1007/s00726-017-2396-3
|
53. |
F. Tian, D. Cui, H. Schwarz, G.G. Estrada, H. Kobayashi, Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20, 1202-1212 ( 2006). https://doi.org/10.1016/j.tiv.2006.03.008
|
54. |
X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 ( 2019). https://doi.org/10.1038/s41467-019-11466-5
|
55. |
S. Zachariah, Y.-L. Liu, Nanocomposites of polybenzoxazine-functionalized multiwalled carbon nanotubes and polybenzoxazine for anticorrosion application. Compos. Sci. Technol. 194, 108169 ( 2020). https://doi.org/10.1016/j.compscitech.2020.108169
|
56. |
S. Adil, W.S. Kim, T.H. Kim, S. Lee, S.W. Hong et al., Defective, oxygen-functionalized multi-walled carbon nanotubes as an efficient peroxymonosulfate activator for degradation of organic pollutants. J. Hazard. Mater. 396, 122757 ( 2020). https://doi.org/10.1016/j.jhazmat.2020.122757
|
57. |
|
58. |
X. Qi, Y. Liu, L. Yu, Z. Yu, L. Chen et al., Versatile liquid metal/alginate composite fibers with enhanced flame retardancy and triboelectric performance for smart wearable textiles. Adv. Sci. 10, e2303406 ( 2023). https://doi.org/10.1002/advs.202303406
|
59. |
A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams et al., Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466-480 ( 2018). https://doi.org/10.1016/j.cej.2018.05.111
|
60. |
|
61. |
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 ( 2013). https://doi.org/10.1039/c3ee42571a
|
62. |
|