1. |
|
2. |
|
3. |
M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373-395 ( 2022). https://doi.org/10.1002/idm2.12040
|
4. |
|
5. |
IEA, Paris. Global EV Policy Explorer (2022). https://www.iea.org/articles/global-ev-policy-explorer
URL
|
6. |
M.C. Smart, B.V. Ratnakumar, L.D. Whitcanack, F.J. Puglia, S. Santee et al., Life verification of large capacity Yardney Li-ion cells and batteries in support of NASA missions. Int. J. Energy Res. 34, 116-132 ( 2010). https://doi.org/10.1002/er.1653
|
7. |
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527-3535 ( 2020). https://doi.org/10.1039/d0ee01538e
|
8. |
|
9. |
|
10. |
P. Selinis, F. Farmakis, Review—a review on the anode and cathode materials for lithium-ion batteries with improved subzero temperature performance. J. Electrochem. Soc. 169, 010526 ( 2022). https://doi.org/10.1149/1945-7111/ac49cc
|
11. |
|
12. |
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 ( 2021). https://doi.org/10.1002/aenm.202101126
|
13. |
S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 ( 2022). https://doi.org/10.1002/adfm.202200796
|
14. |
|
15. |
Y. Na, X. Sun, A. Fan, S. Cai, C. Zheng, Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chin. Chem. Lett. 32, 973-982 ( 2021). https://doi.org/10.1016/j.cclet.2020.09.007
|
16. |
D. Zhang, C. Tan, T. Ou, S. Zhang, L. Li et al., Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review. Energy Rep. 8, 4525-4534 ( 2022). https://doi.org/10.1016/j.egyr.2022.03.130
|
17. |
S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang et al., Electrolyte design for low-temperature Li-metal batteries: challenges and prospects. Nano-Micro Lett. 16, 35 ( 2023). https://doi.org/10.1007/s40820-023-01245-9
|
18. |
J. Sun, L. Ye, X. Zhao, P. Zhang, J. Yang, Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: a review. Molecules 28, 2108 ( 2023). https://doi.org/10.3390/molecules28052108
|
19. |
Y. Zheng, T. Qian, J. Zhou, J. Liu, Z. Wang et al., Advanced strategies for improving lithium storage performance under cryogenic conditions. Adv. Energy Mater. 13, 2203719 ( 2023). https://doi.org/10.1002/aenm.202203719
|
20. |
Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2, 434-442 ( 2023). https://doi.org/10.1002/idm2.12080
|
21. |
C.E.L. Foss, A.M. Svensson, Ø. Gullbrekken, S. Sunde, F. Vullum-Bruer, Temperature effects on performance of graphite anodes in carbonate based electrolytes for lithium ion batteries. J. Energy Storage 17, 395-402 ( 2018). https://doi.org/10.1016/j.est.2018.04.001
|
22. |
X. Dong, Y. Yang, P. Li, Z. Fang, Y. Wang et al., A high-rate and long-life rechargeable battery operated at -75 °C. Batter. Supercaps 3, 1016-1020 ( 2020). https://doi.org/10.1002/batt.202000117
|
23. |
L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe 1-x S nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81-89 ( 2017). https://doi.org/10.1016/j.nanoen.2017.05.012
|
24. |
G.A. Collins, H. Geaney, K.M. Ryan, Alternative anodes for low temperature lithium-ion batteries. J. Mater. Chem. A 9, 14172-14213 ( 2021). https://doi.org/10.1039/D1TA00998B
|
25. |
Y. Li, G. Zheng, G. Liu, Z. Yuan, X. Huang et al., A review on electrode and electrolyte for lithium ion batteries under low temperature. Electroanalysis 35, e202300042 ( 2023). https://doi.org/10.1002/elan.202300042
|
26. |
Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun et al., Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 50, 3178-3210 ( 2021). https://doi.org/10.1039/d0cs01017k
|
27. |
P. Mei, Y. Zhang, W. Zhang, Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance. Nanoscale 15, 987-997 ( 2023). https://doi.org/10.1039/d2nr06294a
|
28. |
Y. Li, K. Qian, Y.-B. He, Y.V. Kaneti, D. Liu et al., Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. J. Power. Sources 342, 24-30 ( 2017). https://doi.org/10.1016/j.jpowsour.2016.12.033
|
29. |
|
30. |
|
31. |
X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036-2089 ( 2021). https://doi.org/10.1039/D1EE00166C
|
32. |
L. Zhao, H. Zhao, X. Long, Z. Li, Z. Du, Superior high-rate and ultralong-lifespan Na 3V 2(PO 4) 3@C cathode by enhancing the conductivity both in bulk and on surface. ACS Appl. Mater. Interfaces 10, 35963-35971 ( 2018). https://doi.org/10.1021/acsami.8b12055
|
33. |
M. Huang, X. Wang, X. Liu, L. Mai, Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv. Mater. 34, e2105611 ( 2022). https://doi.org/10.1002/adma.202105611
|
34. |
|
35. |
|
36. |
M.C. Smart, B.V. Ratnakumar, Effects of electrolyte composition on lithium plating in lithium-ion cells. J. Electrochem. Soc. 158, A379-A389 ( 2011). https://doi.org/10.1149/1.3544439
|
37. |
H. Ge, T. Aoki, N. Ikeda, S. Suga, T. Isobe et al., Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization. J. Electrochem. Soc. 164, A1050-A1060 ( 2017). https://doi.org/10.1149/2.0461706jes
|
38. |
C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4, A24-A27 ( 2015). https://doi.org/10.1149/2.0041502eel
|
39. |
|
40. |
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15, 1711-1759 ( 2022). https://doi.org/10.1039/d1ee03292e
|
41. |
|
42. |
Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng et al., Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6, 88683-88700 ( 2016). https://doi.org/10.1039/C6RA19482F
|
43. |
|
44. |
X. Lian, N. Xu, Y. Ma, F. Hu, H. Wei et al., In-situ formation of Co 1-xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem. Eng. J. 421, 127755 ( 2021). https://doi.org/10.1016/j.cej.2020.127755
|
45. |
J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang et al., On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater. 35, e2210734 ( 2023). https://doi.org/10.1002/adma.202210734
|
46. |
S. Faraji, O. Yildiz, C. Rost, K. Stano, N. Farahbakhsh et al., Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon 111, 411-418 ( 2017). https://doi.org/10.1016/j.carbon.2016.10.012
|
47. |
|
48. |
|
49. |
B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li 4Ti 5O 12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 98, 1-71 ( 2015). https://doi.org/10.1016/j.mser.2015.10.001
|
50. |
|
51. |
X.-H. Ma, X. Cao, Y.-Y. Ye, F. Qiao, M.-F. Qian et al., Study on low-temperature performances of Nb 16W 5O 55 anode for lithium-ion batteries. Solid State Ion. 353, 115376 ( 2020). https://doi.org/10.1016/j.ssi.2020.115376
|
52. |
N.V. Kosova, D.Z. Tsydypylov, Effect of mechanical activation and carbon coating on electrochemistry of TiNb 2O 7 anodes for lithium-ion batteries. Batteries 8, 52 ( 2022). https://doi.org/10.3390/batteries8060052
|
53. |
G. Yu, Q. Zhang, J. Jing, X. Wang, Y. Li et al., Bulk modification of porous TiNb 2 O 7 microsphere to achieve superior lithium-storage properties at low temperature. Small 19, e2303087 ( 2023). https://doi.org/10.1002/smll.202303087
|
54. |
Y. Chen, Z. Pu, Y. Liu, Y. Shen, S. Liu et al., Enhancing the low-temperature performance in lithium ion batteries of Nb 2O 5 by combination of W doping and MXene addition. J. Power. Sources 515, 230601 ( 2021). https://doi.org/10.1016/j.jpowsour.2021.230601
|
55. |
L. Cai, Z. Li, S. Zhang, K. Prenger, M. Naguib et al., Safer lithium-ion battery anode based on Ti 3C 2T z MXene with thermal safety mechanistic elucidation. Chem. Eng. J. 419, 129387 ( 2021). https://doi.org/10.1016/j.cej.2021.129387
|
56. |
N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang et al., Fe 3+-stabilized Ti 3C 2T MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 67, 156-164 ( 2021). https://doi.org/10.1016/j.jmst.2020.06.037
|
57. |
C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488-1504 ( 2014). https://doi.org/10.1002/anie.201303971
|
58. |
|
59. |
X. Tian, L. Du, Y. Yan, S. Wu, An investigation into the charge-storage mechanism of MnO@Graphite as anode for lithium-ion batteries at low temperature. ChemElectroChem 6, 2248-2253 ( 2019). https://doi.org/10.1002/celc.201900324
|
60. |
L. Tan, X. Lan, R. Hu, J. Liu, B. Yuan et al., Stable lithium storage at subzero temperatures for high-capacity Co 3O 4@graphene composite anodes. ChemNanoMat 7, 61-70 ( 2021). https://doi.org/10.1002/cnma.202000547
|
61. |
J.-G. Han, I. Park, J. Cha, S. Park, S. Park et al., Interfacial architectures derived by lithium difluoro(bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability. ChemElectroChem 4, 3 ( 2017). https://doi.org/10.1002/celc.201600812
|
62. |
H. Duan, L. Du, S. Zhang, Z. Chen, S. Wu, Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co 3O 4 anode. J. Mater. Chem. A 7, 8327-8334 ( 2019). https://doi.org/10.1039/C9TA00294D
|
63. |
|
64. |
|
65. |
L. Li, Y. Ma, F. Cui, Y. Li, D. Yu et al., Novel insight into rechargeable aluminum batteries with promising selenium Sulfide@Carbon nanofibers cathode. Adv. Mater. 35, e2209628 ( 2023). https://doi.org/10.1002/adma.202209628
|
66. |
E. Markevich, G. Salitra, D. Aurbach, Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes. J. Electrochem. Soc. 163, A2407-A2412 ( 2016). https://doi.org/10.1149/2.1291610jes
|
67. |
Y. Domi, H. Usui, T. Hirosawa, K. Sugimoto, T. Nakano et al., Impact of low temperatures on the lithiation and delithiation properties of Si-based electrodes in ionic liquid electrolytes. ACS Omega 7, 15846-15853 ( 2022). https://doi.org/10.1021/acsomega.2c00947
|
68. |
H. Mou, W. Xiao, C. Miao, R. Li, L. Yu, Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front. Chem. 8, 141 ( 2020). https://doi.org/10.3389/fchem.2020.00141
|
69. |
|
70. |
X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146-169 ( 2020). https://doi.org/10.1016/j.ensm.2020.05.010
|
71. |
|
72. |
Z. Yao, X. Xia, C.-A. Zhou, Y. Zhong, Y. Wang et al., Smart construction of integrated CNTs/Li 4Ti 5O 12 core/shell arrays with superior high-rate performance for application in lithium-ion batteries. Adv. Sci. 5, 1700786 ( 2018). https://doi.org/10.1002/advs.201700786
|
73. |
M. Odziomek, F. Chaput, A. Rutkowska, K. Świerczek, D. Olszewska et al., Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 ( 2017). https://doi.org/10.1038/ncomms15636
|
74. |
J. Li, T. Zhang, C. Han, H. Li, R. Shi et al., Crystallized lithium titanate nanosheets prepared via spark plasma sintering for ultra-high rate lithium ion batteries. J. Mater. Chem. A 7, 455-460 ( 2019). https://doi.org/10.1039/C8TA10680K
|
75. |
|
76. |
E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, T. Kallio, Effect of Li 4Ti 5O 12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J. Phys. Chem. C 119, 2277-2283 ( 2015). https://doi.org/10.1021/jp509428c
|
77. |
M. Marinaro, M. Pfanzelt, P. Kubiak, R. Marassi, M. Wohlfahrt-Mehrens, Low temperature behaviour of TiO 2 rutile as negative electrode material for lithium-ion batteries. J. Power. Sources 196, 9825-9829 ( 2011). https://doi.org/10.1016/j.jpowsour.2011.07.008
|
78. |
|
79. |
S. Choi, Y.-G. Cho, J. Kim, N.-S. Choi, H.-K. Song et al., Mesoporous germanium anode materials for lithium-ion battery with exceptional cycling stability in wide temperature range. Small 13, 201603045 ( 2017). https://doi.org/10.1002/smll.201603045
|
80. |
J. Li, Z. Tang, Z. Zhang, Excellent low-temperature lithium intercalation performance of nanostructured hydrogen titanate electrodes. Electrochem. Solid-State Lett. 8, A570 ( 2005). https://doi.org/10.1149/1.2039960
|
81. |
H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng et al., Electrospun Li 3.9Cr 0.3Ti 4.8O 12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloys Compd. 701, 99-106 ( 2017). https://doi.org/10.1016/j.jallcom.2017.01.067
|
82. |
I.M. Gavrilin, Y.O. Kudryashova, A.A. Kuz’mina, T.L. Kulova, A.M. Skundin et al., High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 888, 115209 ( 2021). https://doi.org/10.1016/j.jelechem.2021.115209
|
83. |
J. Wang, M. Yang, J. Wang, D. Liu, G. Zou et al., Lithiation MAX derivative electrodes with low overpotential and long-term cyclability in a wide-temperature range. Energy Storage Mater. 47, 611-619 ( 2022). https://doi.org/10.1016/j.ensm.2022.02.050
|
84. |
Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia et al., MoS 2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10, 8526-8535 ( 2016). https://doi.org/10.1021/acsnano.6b03683
|
85. |
J. Xu, X. Wang, N. Yuan, B. Hu, J. Ding et al., Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance. J. Power. Sources 430, 74-79 ( 2019). https://doi.org/10.1016/j.jpowsour.2019.05.024
|
86. |
M. Shang, X. Chen, B. Li, J. Niu, A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti 3C 2 MXene matrix as anode. ACS Nano 14, 3678-3686 ( 2020). https://doi.org/10.1021/acsnano.0c00556
|
87. |
F. Lu, J. Liu, J. Xia, Y. Yang, X. Wang, Engineering C-N moieties in branched nitrogen-doped graphite tubular foam toward stable Li +-storage at low temperature. Ind. Eng. Chem. Res. 59, 5858-5864 ( 2020). https://doi.org/10.1021/acs.iecr.0c00847
|
88. |
H.-H. Fan, H.-H. Li, Z.-W. Wang, W.-L. Li, J.-Z. Guo et al., Tailoring coral-like Fe 7Se 8@C for superior low-temperature Li/Na-ion half/full batteries: synthesis, structure, and DFT studies. ACS Appl. Mater. Interfaces 11, 47886-47893 ( 2019). https://doi.org/10.1021/acsami.9b15765
|
89. |
C. Liang, Y. Tao, N. Yang, D. Huang, S. Li et al., Bubble-templated synthesis of Fe 2(MoO4) 3 hollow hierarchical microsphere with superior low-temperature behavior and high areal capacity for lithium ion batteries. Electrochim. Acta 311, 192-200 ( 2019). https://doi.org/10.1016/j.electacta.2019.04.133
|
90. |
|
91. |
A. Huang, Y. Ma, J. Peng, L. Li, S.-L. Chou et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 1, 141-162 ( 2021). https://doi.org/10.1016/j.esci.2021.11.006
|
92. |
G. Zhao, Z. Wei, N. Zhang, K. Sun, Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes. Mater. Lett. 89, 243-246 ( 2012). https://doi.org/10.1016/j.matlet.2012.07.066
|
93. |
C. Lv, C. Lin, X.S. Zhao, Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv. Energy Mater. 12, 2102550 ( 2022). https://doi.org/10.1002/aenm.202102550
|
94. |
Q. Meng, F. Chen, Q. Hao, N. Li, X. Sun, Nb-doped Li 4Ti 5O 12-TiO 2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. J. Alloys Compd. 885, 160842 ( 2021). https://doi.org/10.1016/j.jallcom.2021.160842
|
95. |
Z. Gao, X. Zhang, H. Hu, D. Guo, H. Zhao et al., Influencing factors of low- and high-temperature behavior of Co-doped Zn 2SnO 4-graphene-carbon nanocomposite as anode material for lithium-ion batteries. J. Electroanal. Chem. 791, 56-63 ( 2017). https://doi.org/10.1016/j.jelechem.2017.03.020
|
96. |
Z. Pu, Q. Lan, Y. Li, S. Liu, D. Yu et al., Preparation of W-doped hierarchical porous Li 4Ti 5O 12/brookite nanocomposites for high rate lithium ion batteries at -20 °C. J. Power. Sources 437, 226890 ( 2019). https://doi.org/10.1016/j.jpowsour.2019.226890
|
97. |
J. Li, Y. Li, Q. Lan, Z. Yang, X.-J. Lv, Multiple phase N-doped TiO 2 nanotubes/TiN/graphene nanocomposites for high rate lithium ion batteries at low temperature. J. Power. Sources 423, 166-173 ( 2019). https://doi.org/10.1016/j.jpowsour.2019.03.060
|
98. |
G. Yan, X. Xu, W. Zhang, Z. Liu, W. Liu, Preparation and electrochemical performance of P 5+-doped Li 4Ti 5O 12 as anode material for lithium-ion batteries. Nanotechnology 31, 205402 ( 2020). https://doi.org/10.1088/1361-6528/ab7047
|
99. |
T. Jiang, S. Ma, J. Deng, T. Yuan, C. Lin et al., Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9, e2105119 ( 2022). https://doi.org/10.1002/advs.202105119
|
100. |
D. Lin, L. Lyu, K. Li, G. Chen, H. Yao et al., Ultrahigh capacity and cyclability of dual-phase TiO 2 nanowires with low working potential at room and subzero temperatures. J. Mater. Chem. A 9, 9256-9265 ( 2021). https://doi.org/10.1039/D0TA12112F
|
101. |
M.J. Lee, K. Lee, J. Lim, M. Li, S. Noda et al., Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 31, 2009397 ( 2021). https://doi.org/10.1002/adfm.202009397
|
102. |
Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang et al., Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1602684 ( 2017). https://doi.org/10.1002/aenm.201602684
|
103. |
Z. Yao, H. Yin, L. Zhou, G. Pan, Y. Wang et al., Ti 3+ self-doped Li 4 Ti 5 O 12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage. Small 15, e1905296 ( 2019). https://doi.org/10.1002/smll.201905296
|
104. |
|
105. |
Z. Shen, Z. Zhang, S. Wang, Z. Liu, L. Wang et al., Mg 2+-W 6+ Co-doped Li 2ZnTi 3O 8 anode with outstanding room, high and low temperature electrochemical performance for lithium-ion batteries. Inorg. Chem. Front. 6, 3288-3294 ( 2019). https://doi.org/10.1039/C9QI01008D
|
106. |
Z. Sun, X. Wang, H. Zhao, S.W. Koh, J. Ge et al., Rambutan-like hollow carbon spheres decorated with vacancy-rich nickel oxide for energy conversion and storage. Carbon Energy 2, 122-130 ( 2020). https://doi.org/10.1002/cey2.16
|
107. |
N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura et al., Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification. Electrochem. Commun. 13, 1116-1118 ( 2011). https://doi.org/10.1016/j.elecom.2011.07.014
|
108. |
K. Li, Y. Zhang, Y. Sun, Y. Xu, H. Zhang et al., Template-free synthesis of biomass-derived carbon coated Li 4Ti 5O 12 microspheres as high performance anodes for lithium-ion batteries. Appl. Surf. Sci. 459, 572-582 ( 2018). https://doi.org/10.1016/j.apsusc.2018.08.047
|
109. |
W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu et al., Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes. Small Struct. 1, 2070001 ( 2020). https://doi.org/10.1002/sstr.202070001
|
110. |
Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced rate capability and low-temperature performance of Li 4Ti 5O 12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 9, 17145-17154 ( 2017). https://doi.org/10.1021/acsami.7b03489
|
111. |
Y. Wang, Y.-X. Zhang, W.-J. Yang, S. Jiang, X.-W. Hou et al., Enhanced rate performance of Li 4Ti 5O 12 anode for advanced lithium batteries. J. Electrochem. Soc. 166, A5014-A5018 ( 2018). https://doi.org/10.1149/2.0041903jes
|
112. |
|
113. |
Z. Zhang, T. Hu, Q. Sun, Y. Chen, Q. Yang et al., The optimized LiBF 4 based electrolytes for TiO 2(B) anode in lithium ion batteries with an excellent low temperature performance. J. Power. Sources 453, 227908 ( 2020). https://doi.org/10.1016/j.jpowsour.2020.227908
|
114. |
L. Tan, X. Lan, J. Chen, H. Zhang, R. Hu et al., LiF-induced stable solid electrolyte interphase for a wide temperature SnO 2-based anode extensible to -50℃. Adv. Energy Mater. 11, 2101855 ( 2021). https://doi.org/10.1002/aenm.202101855
|
115. |
X. Liu, T. Zhang, X. Shi, Y. Ma, D. Song et al., Hierarchical sulfide-rich modification layer on SiO/C anode for low-temperature Li-ion batteries. Adv. Sci. 9, e2104531 ( 2022). https://doi.org/10.1002/advs.202104531
|
116. |
Y. Wang, C. Ma, W. Ma, W. Fan, Y. Sun et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Mater. 6, 045025 ( 2019). https://doi.org/10.1088/2053-1583/ab30f9
|
117. |
D. Wang, H. Liu, Z. Shan, D. Xia, R. Na et al., Nitrogen, sulfur Co-doped porous graphene boosting Li 4Ti 5O 12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 27, 387-395 ( 2020). https://doi.org/10.1016/j.ensm.2020.02.019
|
118. |
A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch et al., Al 2O 3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior. J. Power. Sources 363, 70-77 ( 2017). https://doi.org/10.1016/j.jpowsour.2017.07.062
|
119. |
|
120. |
Y. Yan, L. Ben, Y. Zhan, X. Huang, Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim. Acta 187, 186-192 ( 2016). https://doi.org/10.1016/j.electacta.2015.11.015
|
121. |
G. Wang, J. Chen, F. Zhang, L. Zhao, Q. Chen et al., Enhanced low-temperature performance of multiscale (Nb 2O 5/TiNb 2O 7)@C nanoarchitectures with intensified ion diffusion kinetics. J. Energy Storage 74, 109415 ( 2023). https://doi.org/10.1016/j.est.2023.109415
|
122. |
B. Hu, X. Zhou, J. Xu, X. Wang, N. Yuan et al., Excellent rate and low temperature performance of lithium-ion batteries based on binder-free Li 4Ti 5O 12 electrode. ChemElectroChem 7, 716-722 ( 2020). https://doi.org/10.1002/celc.201901914
|
123. |
A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, S. Passerini, 3D porous Cu-Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 ( 2018). https://doi.org/10.1002/aenm.201701706
|
124. |
W. Ma, Y. Wang, Y. Yang, X. Wang, Z. Yuan et al., Temperature-dependent Li storage performance in nanoporous Cu-Ge-Al alloy. ACS Appl. Mater. Interfaces 11, 9073-9082 ( 2019). https://doi.org/10.1021/acsami.8b20654
|
125. |
L. Lin, L. Zhang, S. Wang, F. Kang, B. Li, Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials. J. Mater. Chem. A 11, 7867-7897 ( 2023). https://doi.org/10.1039/D3TA00320E
|
126. |
P. Wang, J. Tian, J. Hu, X. Zhou, C. Li, Supernormal conversion anode consisting of high-density MoS 2 bubbles wrapped in thin carbon network by self-sulfuration of polyoxometalate complex. ACS Nano 11, 7390-7400 ( 2017). https://doi.org/10.1021/acsnano.7b03665
|
127. |
C.-K. Ho, C.-Y.V. Li, Z. Deng, K.-Y. Chan, H. Yung et al., Hierarchical macropore-mesoporous shell carbon dispersed with Li 4Ti 5O 12 for excellent high rate sub-freezing Li-ion battery performance. Carbon 145, 614-621 ( 2019). https://doi.org/10.1016/j.carbon.2019.01.068
|
128. |
Y. Xue, H. Li, M. Zhang, W. Yu, K. Zhuo et al., MnO@N-C/flake graphite composite featuring bottom-top charge transfer channels and superior Li-storage performance at low-temperature. J. Alloys Compd. 848, 156571 ( 2020). https://doi.org/10.1016/j.jallcom.2020.156571
|
129. |
G. Wang, M. Aubin, A. Mehta, H. Tian, J. Chang et al., Stabilization of Sn anode through structural reconstruction of a Cu-Sn intermetallic coating layer. Adv. Mater. 32, e2003684 ( 2020). https://doi.org/10.1002/adma.202003684
|
130. |
Z. Yi, Z. Wang, Y. Cheng, L. Wang, Sn-based intermetallic compounds for Li-ion batteries: structures, lithiation mechanism, and electrochemical performances. Energy Environ. Mater. 1, 132-147 ( 2018). https://doi.org/10.1002/eem2.12016
|
131. |
|
132. |
|
133. |
|
134. |
H. Liang, L. Liu, N. Wang, W. Zhang, C.-T. Hung et al., Unusual mesoporous titanium niobium oxides realizing sodium-ion batteries operated at - 40 ℃. Adv. Mater. 34, e2202873 ( 2022). https://doi.org/10.1002/adma.202202873
|
135. |
S.X. Drakopoulos, A. Gholamipour-Shirazi, P. MacDonald, R.C. Parini, C.D. Reynolds et al., Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning. Cell Rep. Phys. Sci. 2, 100683 ( 2021). https://doi.org/10.1016/j.xcrp.2021.100683
|