|
|
Rational Design of Cost-Effective Metal-Doped ZrO2 for Oxygen Evolution Reaction |
Yuefeng Zhang1, Tianyi Wang2, Liang Mei1, Ruijie Yang1, Weiwei Guo4, Hao Li2( ), Zhiyuan Zeng1,3( ) |
1 Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, People’s Republic of China 2 Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan 3 Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, People’s Republic of China 4 Shanxi Supercomputing Center, Lvliang, 033000, Shanxi, People’s Republic of China |
|
|
Abstract The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction (OER) due to the “stable-or-active” dilemma. Zirconium dioxide (ZrO2), a versatile and low-cost material that can be stable under OER operating conditions, exhibits inherently poor OER activity from experimental observations. Herein, we doped a series of metal elements to regulate the ZrO2 catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions. Microkinetic modeling as a function of the OER activity descriptor (GO*-GHO*) displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO2 surface, among which Fe and Rh (in the form of single-atom dopant) reach the volcano peak (i.e. the optimal activity of OER under the potential of interest), indicating excellent OER performance. Free energy diagram calculations, density of states, and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO2, leading to low OER overpotential, high conductivity, and good stability. Considering cost-effectiveness, single-atom Fe doped ZrO2 emerged as the most promising catalyst for OER. This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.
|
Received: 14 December 2023
Published: 25 April 2024
|
Corresponding Authors:
Hao Li, Zhiyuan Zeng
|
|
|
|
|
Fig. 1 a Proposed strategy for screening metals capable of enhancing the OER activity of ZrO2 via doping. b Calculated surface energies of the three low-index slabs of monoclinic ZrO2. More details can be found in Fig. S1
|
|
Fig. 2 a Optimized configuration of ZrO2 with top and side views. The purple and red spheres represent Zr and O, respectively. b Calculated surface Pourbaix diagram of the ZrO2 surface. c Formation energy values of different single-metal atoms doped ZrO2. d The feasible metals for doping on the surface of ZrO2.
|
$\varepsilon_{d}$ on elevated metal doped ZrO2. e A heatmap represents the magnitude of values as a color. Values (unit eV) were obtained by GO*-GHO* = 1.5, and darker colors correspond to lower values implying higher activity.">
|
Fig. 3 a Kinetic OER activity volcano model as a function of GO*-GHO* at 5 μ A cm−2 (black line). b Scaling relation between EO* and EHO* on feasible metals doped ZrO2. The linear scaling relations of EHO* vs. c EHOO* and d $\varepsilon_{d}$ on elevated metal doped ZrO2. e A heatmap represents the magnitude of values as a color. Values (unit eV) were obtained by GO*-GHO* = 1.5, and darker colors correspond to lower values implying higher activity.
|
|
Fig. 4 Gibbs Free energy diagram of OER on a ZrO2, b Ti-ZrO2, c Pt-ZrO2, d Fe-ZrO2, and e Rh-ZrO2. f Adsorption energy values of O* (pink line) and HO* (blue line) on five varied substrates. The inset is the charge density difference of HO*, and the isosurface value was set to 0.001 e Å−3
|
|
Fig. 5 Crystal orbital Hamilton population (COHP) analysis of the interactions between a Rh-O in O*, b Zr-O in O*, c Fe-O in O*, d Rh-O in HO*, f Zr-O in HO*, and e Fe-O in HO*
|
1. | J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). | 2. | Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 4998 (2017). | 3. | L. Mei, X. Gao, Z. Gao, Q. Zhang, X. Yu et al., Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction. Chem. Commun. 57, 2879-2882 (2021). | 4. | M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi et al., Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010). | 5. | B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). | 6. | J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). | 7. | P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). | 8. | T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets et al., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474-6502 (2010). | 9. | I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159-1165 (2011). | 10. | E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4, 1426-1440 (2014). | 11. | M.D. Symes, L. Cronin, Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403-409 (2013). | 12. | J. Liu, Y. He, L. Yan, C. Ma, C. Zhang et al., Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization. Fuel 263, 116803 (2020). | 13. | T. Yamaguchi, Application of ZrO2 as a catalyst and a catalyst support. Catal. Today 20, 199-217 (1994). | 14. | F.F. Alharbi, M.U. Nisa, H.M.A. Hassan, S. Manzoor, Z. Ahmad et al., Novel lanthanum sulfide-decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction. J. Solid State Electrochem. 26, 2171-2182 (2022). | 15. | S.B. Jaffri, K.S. Ahmad, I. Abrahams, C.J. Kousseff, C.B. Nielsen et al., Rare earth (Sm/Eu/Tm) doped ZrO2 driven electro-catalysis, energy storage, and scaffolding in high-performance perovskite solar cells. Int. J. Hydrog. Energy 48, 29119-29141 (2023). | 16. | M. Sadaqat, S. Manzoor, S. Aman, L. Nisar, M. Najam-Ul-Haq et al., Defective nickel zirconium oxide mesoporous bifunctional electrocatalyst for oxygen evolution reaction and overall water splitting. Fuel 333, 126538 (2023). | 17. | Y. Zhang, J. Liu, Z. Wei, Q. Liu, C. Wang et al., Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces. J. Energy Chem. 33, 22-30 (2019). | 18. | R.Q. Huang, W.P. Liao, M.X. Yan, S. Liu, Y.M. Li et al., P doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction. J. Electrochem. 29, 2203081 (2023). cn/journal/vol29/iss5/3 | 19. | J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 55 (2019). | 20. | Y. Zhang, W. Zhang, Y. Feng, J. Ma, Promoted CO2 electroreduction over indium-doped SnP3: a computational study. J. Energy Chem. 48, 1-6 (2020). | 21. | Z. X. Wan, C. H. Wang, X. W. Kang, Self-supported Ru-Cu3P catalyst towards alkaline hydrogen evolution. J. Electrochem. 28, 2214005 (2022). | 22. | A.K. Mishra, D. Pradhan, Hierarchical urchin-like cobalt-doped CuO for enhanced electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 4, 9412-9419 (2021). | 23. | M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co-O covalency via Ce(4f)─O(2p)─Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 35, 2302462 (2023). | 24. | G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). | 25. | G. Kresse, J. Furthmüller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996). | 26. | B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413-7421 (1999). | 27. | L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006). | 28. | D. Mutter, D.F. Urban, C. Elsässer, Determination of formation energies and phase diagrams of transition metal oxides with DFT+U. Materials 13, 4303 (2020). | 29. | K. Jiang, S. Zhou, Z. Wang, Textured electronic states of the triangular-lattice Hubbard model and NaxCoO2. Phys. Rev. B 90, 165135 (2014). | 30. | A. Cadi-Essadek, A. Roldan, D. Santos-Carballal, P.E. Ngoepe, M. Claeys et al., DFT+U study of the electronic, magnetic and mechanical properties of Co, CoO, and Co3O4. S. Afr. J. Chem. 74, 8-16 (2021). | 31. | X. Shi, S.L. Bernasek, A. Selloni, Formation, electronic structure, and defects of Ni substituted spinel cobalt oxide: a DFT+U study. J. Phys. Chem. C 120, 14892-14898 (2016). | 32. | A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer et al., Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 84, 045115 (2011). | 33. | G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999). | 34. | E.H. Kisi, C.J. Howard, Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater. 153-154, 1-36 (1998). | 35. | V.G. Keramidas, W.B. White, Raman scattering study of the crystallization and phase transformations of ZrO2. J. Am. Ceram. Soc. 57, 22-24 (1974). | 36. | D.K. Smith, W. Newkirk, The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallogr. 18, 983-991 (1965). | 37. | S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). | 38. | H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). | 39. | S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030-1035 (2016). | 40. | J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886-17892 (2004). | 41. | M. Huang, C. Sun, X. Zhang, P. Wang, S. Xu et al., The surface structure, stability, and catalytic performances toward O2 reduction of CoP and FeCoP2. Dalton Trans. 51, 10420-10431 (2022). | 42. | Q. Li, M. Rellán-Piñeiro, N. Almora-Barrios, M. Garcia-Ratés, I.N. Remediakis et al., Shape control in concave metal nanoparticles by etching. Nanoscale 9, 13089-13094 (2017). | 43. | C.F. Dickens, C. Kirk, J.K. Nørskov, Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960-18977 (2019). | 44. | H. Liu, X. Jia, A. Cao, L. Wei, C. D’agostino et al., The surface states of transition metal X-ides under electrocatalytic conditions. J. Chem. Phys. 158, 6 (2023). | 45. | W. Yang, Z. Jia, B. Zhou, L. Wei, Z. Gao et al., Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Commun. Chem. 6, 6 (2023). | 46. | W. Yang, Z. Jia, L. Chen, B. Zhou, D. Zhang et al., Effects of intermetal distance on the electrochemistry-induced surface coverage of M-N-C dual-atom catalysts. Chem. Commun. 59, 10761-10764 (2023). | 47. | H. Liu, H. Zheng, Z. Jia, B. Zhou, Y. Liu et al., The CatMath: an online predictive platform for thermal + electrocatalysis. Front. Chem. Sci. Engin. 17, 2156-2160 (2023). | 48. | G.-M. Rignanese, Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-κ candidates: the contribution of density-functional theory. J. Phys. Condens. Matter 17, R357-R379 (2005). | 49. | A. Christensen, E.A. Carter, First-principles study of the surfaces of zirconia. Phys. Rev. B 58, 8050-8064 (1998). | 50. | C. Morterra, G. Cerrato, L. Ferroni, L. Montanaro, Surface characterization of yttria-stabilized tetragonal ZrO2 Part 1. Structural, morphological, and surface hydration features. Mater. Chem. Phys. 37, 243-257 (1994). | 51. | L.G.V. Briquet, M. Sarwar, J. Mugo, G. Jones, F. Calle-Vallejo, A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction. ChemCatChem 9, 1261-1268 (2017). | 52. | H. Li, S. Kelly, D. Guevarra, Z. Wang, Y. Wang et al., Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 4, 463-468 (2021). | 53. | J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83-89 (2007). | 54. | K.S. Exner, J. Anton, T. Jacob, H. Over, Ligand effects and their impact on electrocatalytic processes exemplified with the oxygen evolution reaction (OER) on RuO2(110). ChemElectroChem 2, 707-713 (2015). | 55. | B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333-337 (2016). | 56. | W. Ahmed, J. Iqbal, S.O. Aisida, A. Badshah, I. Ahmad et al., Structural, magnetic and dielectric characteristics of optically tuned Fe doped ZrO2 nanoparticles with visible light driven photocatalytic activity. Mater. Chem. Phys. 251, 122999 (2020). | 57. | A.O. de Souza, F.F. Ivashita, V. Biondo, A. Paesano Jr. D. H. Mosca, Structural and magnetic properties of iron doped ZrO2. J. Alloys Compd. 680, 701-710 (2016). | 58. | P. Sakthisharmila, N. Sivakumar, J. Mathupriya, Synthesis, characterization of Mn, Fe doped ZrO2 composites and its applications on photocatalytic and solar catalytic studies. Mater. Today Proc. 47, 2159-2167 (2021). | 59. | X. Zhang, C. Sun, S. Xu, M. Huang, Y. Wen et al., DFT-assisted rational design of CoMxP/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 15, 8897-8907 (2022). | 60. | Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, 3d self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 27, 17025132017 (2017). |
|
[1] |
Liuan Li, Shi Fang, Wei Chen, Yueyue Li, Mohammad Fazel Vafadar, Danhao Wang, Yang Kang, Xin Liu, Yuanmin Luo, Kun Liang, Yiping Dang, Lei Zhao, Songrui Zhao, Zongzhi Yin, Haiding Sun. Facile Semiconductor p-n Homojunction Nanowires with Strategic p-Type Doping Engineering Combined with Surface Reconstruction for Biosensing Applications[J]. Nano-Micro Letters, 2024, 16(1): 192-. |
[2] |
Wei Guo, Linhui Yu, Ling Tang, Yan Wan, Yangming Lin. Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules[J]. Nano-Micro Letters, 2024, 16(1): 125-. |
[3] |
Hyeongtae Lim, Hyeokjin Kwon, Hongki Kang, Jae Eun Jang, Hyuk-Jun Kwon. Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature[J]. Nano-Micro Letters, 2024, 16(1): 113-. |
[4] |
Yu Du, Weijie Chen, Yu Wang, Yue Yu, Kai Guo, Gan Qu, Jianan Zhang. Quantum Spin Exchange Interactions to Accelerate the Redox Kinetics in Li-S Batteries[J]. Nano-Micro Letters, 2024, 16(1): 100-. |
[5] |
Jie Ma, Siyang Xing, Yabo Wang, Jinhu Yang, Fei Yu. Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination[J]. Nano-Micro Letters, 2024, 16(1): 143-. |
[6] |
Yizhe Li, Yajie Li, Hao Sun, Liyao Gao, Xiangrong Jin, Yaping Li, Zhi LV, Lijun Xu, Wen Liu, Xiaoming Sun. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization[J]. Nano-Micro Letters, 2024, 16(1): 139-. |
|
|
|
|