|
|
Metal-Halide Perovskite Submicrometer-Thick Films for Ultra-Stable Self-Powered Direct X-Ray Detectors |
Marco Girolami1( ), Fabio Matteocci2, Sara Pettinato1,3, Valerio Serpente1, Eleonora Bolli1, Barbara Paci4, Amanda Generosi4, Stefano Salvatori1,3, Aldo Di Carlo2,4, Daniele M. Trucchi1 |
1 CNR-ISM, Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, Sede Secondaria di Montelibretti, DiaTHEMA Lab, Strada Provinciale 35D, 9, 00010, Montelibretti, Rome, Italy 2 CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy 3 Faculty of Engineering, Università degli Studi Niccolò Cusano, Via don Carlo Gnocchi 3, 00166, Rome, Italy 4 SpecXLab, CNR-ISM, Consiglio Nazionale Delle Ricerche, Istituto di Struttura Della Materia, Area della Ricerca di Tor Vergata, Via del Fosso del Cavaliere 100, 00133, Rome, Italy |
|
|
Abstract Metal-halide perovskites are revolutionizing the world of X-ray detectors, due to the development of sensitive, fast, and cost-effective devices. Self-powered operation, ensuring portability and low power consumption, has also been recently demonstrated in both bulk materials and thin films. However, the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours, often reporting degradation of the detection performance. Here it is shown that self-powered direct X-ray detectors, fabricated starting from a FAPbBr3 submicrometer-thick film deposition onto a mesoporous TiO2 scaffold, can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss, demonstrating ultra-high operational stability and excellent repeatability. No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy, revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film. In addition, trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy−1 cm−3 at 0 V, an unprecedented value in the field of thin-film-based photoconductors and photodiodes for “hard” X-rays. Finally, prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.
|
Received: 14 January 2024
Published: 26 April 2024
|
Corresponding Authors:
Marco Girolami
|
|
|
|
|
Fig. 1 Device structure and basic material characterization. a Sketch of the complete device stack (Glass/FTO/c-TiO2/m-TiO2/FAPbBr3/PTAA/ITO) showing the electrode polarity used in the experiments with bias. b Cross-Sectional SEM image of the device stack before the deposition of the PTAA layer (Glass/FTO/c-TiO2/m-TiO2/FAPbBr3). c Absorption coefficient and photoluminescence spectra of the FAPbBr3 film. d EDX maps showing the elemental distribution of the complete device stack (Glass/FTO/c-TiO2/m-TiO2/FAPbBr3/PTAA/ITO). All maps have the same scale bar (200 nm) of the related cross-sectional SEM image shown on the left. e XRD patterns of the Glass/FTO/c-TiO2/m-TiO2/FAPbBr3 (black line), the Glass/FTO/c-TiO2/m-TiO2/FAPbBr3/PTAA (blue line), and the complete device Glass/FTO/c-TiO2/m-TiO2/FAPbBr3/PTAA/ITO (red line) stacks. Cubic FAPbBr3 Miller indexes are also shown. FTO reflections are labeled accordingly to crystallographic database ICDD card No. 00-001-0657. f Planar SEM image of the FAPbBr3 film after the deposition by solvent quenching method. g AFM image (5 × 5 μm2) of the FAPbBr3 film surface
|
|
Fig. 2 Photoelectronic properties in the UV-Vis-NIR range. a External quantum efficiency of two different FAPbBr3 complete devices (FS-VI and FS-VIII) in the 400-700 nm wavelength range at VB = 0 V. b Amplitude of the modulated photocurrent (Iph) under monochromatic light (λ = 375 nm) of a FAPbBr3 electron-only device as a function of the applied bias voltage (VB). Dashed blue line indicates the best fit to data obtained by using Hecht's equation (see Sect. 2.5 for details). c Carrier drift distance (L) of the FAPbBr3 electron-only device as a function of the applied electric field EB = VB/d. Minimum (blue dots) and maximum (red dots) values were calculated from the minimum and maximum values obtained for the µeτe product. Gray box is a visual guide to indicate all the possible values of L. d Capacitance-voltage plot (green) and Mott-Schottky plot (blue) of a FAPbBr3 complete device. Red dotted line indicates the best linear fit to data corresponding to the linear region of the Mott-Schottky plot. The X-intercept of the red dotted line returns the built-in potential (Vbi = 1.35 V). e Normalized photoluminescence decay under monochromatic light (λ = 375 nm) of a FAPbBr3 electron-only device. Red solid line indicates the best fit to data obtained by using a mono-exponential decay equation. f Noise current spectrum of a FAPbBr3 complete device in the 0.1-50 Hz range. The average value (38 fA Hz−1/2) was used to estimate the device detectivity. Red dashed line indicates the limit of the shot noise
|
3,4,8,9,12,13,14,17,18,20,21,22,23,24,25,26,27,28,30,31,33,47,48,55,63,64,5,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,101,102,103,104,105,106]. The legend labels “MA+”, “Cs+” and “FA+” are used for the three most common single-cation MHPs. “Other MHP” include mixed-cation MHPs and other single-cation MHPs employing cations different from MA+, Cs+, and FA+. The term “hybrid” indicates devices based on hybrid MHP/non-perovskite active layers. The term “bulk” is used for free-standing active bulk devices. “Thick film” and “Thin film” indicate devices based on thick (> 10 μm) and thin (≤ 10 μm) films deposited on free-standing non-active substrates, respectively">
|
Fig. 3 Evaluation of the detection performance under keV-range X-rays. a Sketch of the keV-range X-ray irradiation setup. The detector is mounted on a xyz stage used for the automatic centering procedure of the X-ray beam spot. b Picture of the prototypal device under test. The picture was taken during UV-Vis-NIR photoconductivity measurements (the green spot is the monochromator output at λ = 555 nm), but the same device configuration was used for X-ray tests. c X-ray photocurrent as a function of time recorded at different radiation dose rate steps. Dashed lines are a guide to the eye to highlight the response linearity with dose rate. d Signal-to-noise ratio (blue squares) and mean X-ray photocurrent density (red squares) as a function of dose rate. Blue and red thin lines indicate the best linear fits to the experimental data. The limit of detection (LoD) is obtained from the intercept (blue circle) of the blue fitting line with SNR = 3 (thick blue line). The surface sensitivity is obtained from the slope of the red fitting line. e Photoconductive gain factor (G) as a function of the absorbed photon flux (φ) at a photon energy Eph = 8.05 keV. The blue continuous line is a visual guide. f Surface specific sensitivity vs. thickness of self-powered thin-film-based direct X-ray detectors (left) and bulk specific sensitivity vs. applied bias voltage (in absolute value) of state-of-the-art solid-state photoconductors and photodiodes for “hard” X-rays (right) reported in the literature [3,4,8,9,12,13,14,17,18,20,21,22,23,24,25,26,27,28,30,31,33,47,48,55,63,64,5,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,101,102,103,104,105,106]. The legend labels “MA+”, “Cs+” and “FA+” are used for the three most common single-cation MHPs. “Other MHP” include mixed-cation MHPs and other single-cation MHPs employing cations different from MA+, Cs+, and FA+. The term “hybrid” indicates devices based on hybrid MHP/non-perovskite active layers. The term “bulk” is used for free-standing active bulk devices. “Thick film” and “Thin film” indicate devices based on thick (> 10 μm) and thin (≤ 10 μm) films deposited on free-standing non-active substrates, respectively
|
|
Fig. 4 Long-term operational stability tests under X-ray irradiation. a Zoomed image of the current recorded during the 100 s “X-ray off” period between two consecutive 12-h long “X-ray on” periods. b Current measured during the whole 26-day long irradiation period, structured as the following: dose rate increasing every 12 h (black), dose rate decreasing every 12 h (blue), and dose rate increasing every 24 h (green). Dose rate was always varied by steps of 12 μGy s−1, with a minimum value of 9.3 μGy s−1 and a maximum value of 189.3 μGy s−1. Red curve shows the accumulation of the ionizing dose during the 26 days. c Variation of the photocurrent signal between two “X-ray on” periods at the same dose rate; blue diamonds refer to variations between the first and the second cycle; green diamonds refer to variations between the first and the third cycle. Dashed lines are a guide to the eye to indicate signals at equal dose rates. d Dark current recorded within a 24-h long period before X-ray irradiation. e X-ray photocurrent recorded within a 24-h long irradiation period at a dose rate of 45.3 μGy s−1. f External quantum efficiency in the 250-800 nm wavelength range evaluated before and after the 26-day long irradiation period at VB = 0 V. g. XRD patterns of a Glass/FTO/c-TiO2/m-TiO2/FAPbBr3/PTAA/ITO stack (complete device) recorded after exposure to increasing values of total ionizing dose (TID) in the 32-192 Gy range
|
|
Fig. 5 Validation of the X-ray detector in relevant environment. a Picture of the MeV-range X-ray irradiation setup. The solid phantom, consisting of 1 cm-thick PMMA (poly(methyl methacrylate) slabs, is used to ensure electronic equilibrium. b Cumulative charge collected as a function of the delivered dose up to 3 Gy. Error bars are smaller than the symbols. Blue continuous line indicates the best linear fit to the experimental data. c X-ray photocurrent density as a function of time recorded at different radiation dose rates. The “X-ray on” periods are programmed to deliver the same dose, whereas “X-ray off” periods vary between 5 and 20 s. d Detail of the measurement performed at the radiotherapy standard dose rate of 3 Gy min−1. e Mean values of the X-ray photocurrent density as a function of dose rate. Red dashed line indicates the best linear fit to the experimental data. The surface specific sensitivity is obtained from the slope of the red dashed fitting line
|
1. | H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4, 144-163 (2021). | 2. | Y. Li, Y. Lei, H. Wang, Z. Jin, Two-dimensional metal halides for X-ray detection applications. Nano-Micro Lett. 15, 128 (2023). | 3. | S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4, 681-688 (2021). | 4. | Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang et al., Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat. Commun. 11, 2304 (2020). | 5. | Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). | 6. | W. Zhu, W. Ma, Y. Su, Z. Chen, X. Chen et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light. Sci. Appl. 9, 112 (2020). | 7. | Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed, Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 6, 739-768 (2021). | 8. | Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos et al., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33, e2006010 (2021). | 9. | W. Pan, B. Yang, G. Niu, K.-H. Xue, X. Du et al., Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 31, e1904405 (2019). | 10. | O.D.I. Moseley, T.A.S. Doherty, R. Parmee, M. Anaya, S.D. Stranks, Halide perovskites scintillators: unique promise and current limitations. J. Mater. Chem. C Mater. 9, 11588-11604 (2021). | 11. | A. Wibowo, M.A.K. Sheikh, L.J. Diguna, M.B. Ananda, M.A. Marsudi et al., Development and challenges in perovskite scintillators for high-resolution imaging and timing applications. Commun. Mater. 4, 21 (2023). | 12. | X. Zheng, W. Zhao, P. Wang, H. Tan, M.I. Saidaminov et al., Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem. 49, 299-306 (2020). | 13. | W. Wei, Y. Zhang, Q. Xu, H. Wei, Y. Fang et al., Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315-321 (2017). | 14. | L. Li, X. Liu, H. Zhang, B. Zhang, W. Jie et al., Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density. ACS Appl. Mater. Interfaces 11, 7522-7528 (2019). | 15. | K. Sakhatskyi, R.A. John, A. Guerrero, S. Tsarev, S. Sabisch et al., Assessing the drawbacks and benefits of ion migration in lead halide perovskites. ACS Energy Lett. 7, 3401-3414 (2022). | 16. | B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015). | 17. | H. Tsai, F. Liu, S. Shrestha, K. Fernando, S. Tretiak et al., A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020). | 18. | Q. Xu, W. Shao, Y. Li, X. Zhang, X. Ouyang et al., High-performance surface barrier X-ray detector based on methylammonium lead tribromide single crystals. ACS Appl. Mater. Interfaces 11, 9679-9684 (2019). | 19. | Y. Luo, M.R. Abidian, J.-H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17, 5211-5295 (2023). | 20. | G.J. Matt, I. Levchuk, J. Knüttel, J. Dallmann, A. Osvet et al., Sensitive direct converting X-Ray detectors utilizing crystalline CsPbBr3 perovskite films fabricated via scalable melt processing. Adv. Mater. Interfaces 7, 1901575 (2020). | 21. | M. Yao, J. Jiang, D. Xin, Y. Ma, W. Wei et al., High-temperature stable FAPbBr3 single crystals for sensitive X-ray and visible light detection toward space. Nano Lett. 21, 3947-3955 (2021). | 22. | Y. Huang, L. Qiao, Y. Jiang, T. He, R. Long et al., A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chem. Int. Ed. 58, 17834-17842 (2019). | 23. | J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16, 575-581 (2022). | 24. | P.-T. Lai, H.-C. Lin, Y.-T. Chuang, C.-Y. Chen, W.-K. Cheng et al., All-vacuum-deposited perovskite X-ray detector with a record-high self-powered sensitivity of 1.2 C Gy-1 cm-3. ACS Appl. Mater. Interfaces 14, 19795-19805 (2022). | 25. | J. Wu, L. Wang, A. Feng, S. Yang, N. Li et al., Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity. Adv. Funct. Mater. 32, 2109149 (2022). | 26. | J. Yukta, M.A. Ghosh, S. Afroz, P.J.S. Alghamdi et al., Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals. ACS Photonics 9, 3529-3539 (2022). | 27. | H. Wu, X. Chen, Z. Song, A. Zhang, X. Du et al., Mechanochemical synthesis of high-entropy perovskite toward highly sensitive and stable X-ray flat-panel detectors. Adv. Mater. 35, e2301406 (2023). | 28. | X. Xu, W. Qian, J. Wang, J. Yang, J. Chen et al., Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance. Adv. Sci. 8, e2102730 (2021). | 29. | P. Jin, Y. Tang, D. Li, Y. Wang, P. Ran et al., Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat. Commun. 14, 626 (2023). | 30. | N.K. Tailor, J. Ghosh, M.A. Afroz, S. Bennett, M. Chatterjee et al., Self-powered x-ray detection and imaging using Cs2AgBiCl6 lead-free double perovskite single crystal. ACS Appl. Electron. Mater. 4, 4530-4539 (2022). | 31. | N. Li, Y. Li, S. Xie, J. Wu, N. Liu et al., High-performance and self-powered X-ray detectors made of smooth perovskite microcrystalline films with 100 μm grains. Angew. Chem. Int. Ed. 62, e202302435 (2023). | 32. | Q. Xu, C. Li, J. Nie, Y. Guo, X. Wang et al., Highly sensitive and stable X-ray detector based on a 0D structural Cs4PbI6 single crystal. J. Phys. Chem. Lett. 12, 287-293 (2021). | 33. | J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni et al., Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics 14, 612-617 (2020). | 34. | A. Singh, F. Matteocci, H. Zhu, D. Rossi, S. Mejaouri et al., Methylamine gas treatment affords improving semitransparency, efficiency, and stability of CH3NH3PbBr3-based perovskite solar cells. Sol. RRL 5, 2100277 (2021). | 35. | H. Karl, Zum mechanismus des lichtelektrischen primärstromes in isolierenden kristallen. Z. Für Phys. 77, 235-245 (1932). | 36. | Y. Xu, Q. Lin, Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7, 011315 (2020). | 37. | H. Shen, R. Nan, Z. Jian, X. Li, Defect step controlled growth of perovskite MAPbBr3 single crystal. J. Mater. Sci. 54, 11596-11603 (2019). | 38. | W. Peng, L. Wang, B. Murali, K.-T. Ho, A. Bera et al., Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28, 3383-3390 (2016). | 39. | O. Almora, D. Baran, G.C. Bazan, C.I. Cabrera, S. Erten-Ela et al., Device performance of emerging photovoltaic materials (Version 3). Adv. Energy Mater. 13, 2203313 (2023). | 40. | F. Matteocci, D. Rossi, L.A. Castriotta, D. Ory, S. Mejaouri et al., Wide bandgap halide perovskite absorbers for semi-transparent photovoltaics: from theoretical design to modules. Nano Energy 101, 107560 (2022). | 41. | L. Basiricò, S.P. Senanayak, A. Ciavatti, M. Abdi-Jalebi, B. Fraboni et al., Detection of X-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Adv. Funct. Mater. 29, 1902346 (2019). | 42. | W. Rehman, R.L. Milot, G.E. Eperon, C. Wehrenfennig, J.L. Boland et al., Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938-7944 (2015). | 43. | S.H. Bennett, J. Ghosh, E. Gros-Daillon, F. Lédée, J. Mayén Guillén et al., Charge transport comparison of FA, MA and Cs lead halide perovskite single crystals for radiation detection. Front. Detect. Sci. Technol. 1, 1249892 (2023). | 44. | X. Liu, M. Xu, Y. Hao, J. Fu, F. Wang et al., Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Appl. Mater. Interfaces 13, 15383-15390 (2021). | 45. | J. Cai, T. Zhao, M. Chen, J. Su, X. Shen et al., Ion migration in the all-inorganic perovskite CsPbBr3 and its impacts on photodetection. J. Phys. Chem. C 126, 10007-10013 (2022). | 46. | C. Kalha, N.K. Fernando, P. Bhatt, F.O.L. Johansson, A. Lindblad et al., Hard X-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. J. Phys. Condens. Matter 33, 233001 (2021). | 47. | W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35, e2210878 (2023). | 48. | S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani et al., Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi B 246, 1794-1805 (2009). | 49. | D.R. Shearer, M. Bopaiah, Dose rate limitations of integrating survey meters for diagnostic X-ray surveys. Health Phys. 79, S20-S21 (2000). | 50. | H. Tsai, L. Pan, X. Li, J. Yoo, S. Tretiak et al., Quantum efficiency gain in 2D perovskite photo and X-ray detectors. Adv. Opt. Mater. 11, 2300847 (2023). | 51. | J. Kim, M. Kang, S. Lee, C. So, D.S. Chung, Interfacial electrostatic-interaction-enhanced photomultiplication for ultrahigh external quantum efficiency of organic photodiodes. Adv. Mater. 33, e2104689 (2021). | 52. | A. Crnjac, M.R. Ramos, N. Skukan, M. Pomorski, M. Jakšić, Charge transport in single crystal CVD diamond studied at high temperatures. J. Phys. D Appl. Phys. 54, 465103 (2021). | 53. | Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen et al., High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018). | 54. | M. Holland, A. Ruth, K. Mielczarek, V.V. Dhas, J.J. Berry et al., Metal halide perovskites demonstrate radiation hardness and defect healing in vacuum. ACS Appl. Mater. Interfaces 14, 9352-9362 (2022). | 55. | A. Ciavatti, R. Sorrentino, L. Basiricò, B. Passarella, M. Caironi et al., High-sensitivity flexible X-ray detectors based on printed perovskite inks. Adv. Funct. Mater. 31, 2009072 (2021). | 56. | M. Li, H. Li, W. Li, B. Li, T. Lu et al., Oriented 2D perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 34, e2108020 (2022). | 57. | IEC - International Electrotechnical Commission, Medical electrical equipment - Part 2-43: Particular requirements for the basic safety and essential performance of X-ray equipment for interventional procedures, IEC 60601-2-43, Geneva, Switzerland (2022). | 58. | D.L. Miller, D. Kwon, G.H. Bonavia, Reference levels for patient radiation doses in interventional radiology: proposed initial values for U.S. practice. Radiology 253, 753-764 (2009). | 59. | V. Milotti, S. Cacovich, D.R. Ceratti, D. Ory, J. Barichello et al., Degradation and self-healing of FAPbBr3 perovskite under soft-X-ray irradiation. Small Methods 7, e2300222 (2023). | 60. | F.T.F. O’Mahony, Y.H. Lee, C. Jellett, S. Dmitrov, D.T.J. Bryant et al., Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. J. Mater. Chem. A 3, 7219-7223 (2015). | 61. | S. Pettinato, M. Girolami, A. Stravato, V. Serpente, D. Musio et al., A highly versatile X-ray and electron beam diamond dosimeter for radiation therapy and protection. Materials 16, 824 (2023). | 62. | S. Pettinato, M. Girolami, R. Olivieri, A. Stravato, C. Caruso et al., Time-resolved dosimetry of pulsed photon beams for radiotherapy based on diamond detector. IEEE Sens. J. 22, 12348-12356 (2022). | 63. | S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444-449 (2015). | 64. | Z. Gou, S. Huanglong, W. Ke, H. Sun, H. Tian et al., Self-powered X-ray detector based on all-inorganic perovskite thick film with high sensitivity under low dose rate. Phys. Status Solidi RRL 13, 1900094 (2019). | 65. | K. Tao, C. Xiong, J. Lin, D. Ma, S. Lin et al., Self-powered photodetector based on perovskite/NiOx heterostructure for sensitive visible light and X-ray detection. Adv. Electron. Mater. 9, 2201222 (2023). | 66. | L. Zhou, X. Lu, J. Wu, H. Jiang, L. Chen et al., Self-powered fast-response X-ray detectors based on vertical GaN p-n diodes. IEEE Electron Device Lett. 40, 1044-1047 (2019). | 67. | M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32, 2110729 (2022). | 68. | H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333-339 (2016). | 69. | X. Wang, D. Zhao, Y. Qiu, Y. Huang, Y. Wu et al., PIN diodes array made of perovskite single crystal for X-ray imaging. Phys. Status Solidi RRL 12, 1800380 (2018). | 70. | J. Song, X. Feng, H. Li, W. Li, T. Lu et al., Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors. J. Phys. Chem. Lett. 11, 3529-3535 (2020). | 71. | S. Tian, F. Sui, K. He, G. Cheng, Y. Ge et al., Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors. Nano Energy 78, 105335 (2020). | 72. | J. Peng, K. Ye, Y. Xu, L. Cui, R. Li et al., X-ray detection based on crushed perovskite crystal/polymer composites. Sens. Actuat. A Phys. 312, 112132 (2020). | 73. | X. Wang, Y. Wu, G. Li, J. Wu, X. Zhang et al., Ultrafast ionizing radiation detection by p-n junctions made with single crystals of solution-processed perovskite. Adv. Electron. Mater. 4, 1800237 (2018). | 74. | F. Ye, H. Lin, H. Wu, L. Zhu, Z. Huang et al., High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv. Funct. Mater. 29, 1806984 (2019). | 75. | S. Shrestha, R. Fischer, G.J. Matt, P. Feldner, T. Michel et al., High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 11, 436-440 (2017). | 76. | M. Hu, S. Jia, Y. Liu, J. Cui, Y. Zhang et al., Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces 12, 16592-16600 (2020). | 77. | Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87-91 (2017). | 78. | Q. Xu, X. Wang, H. Zhang, W. Shao, J. Nie et al., CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application. ACS Appl. Electron. Mater. 2, 879-884 (2020). | 79. | J. Li, X. Du, G. Niu, H. Xie, Y. Chen et al., Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection. ACS Appl. Mater. Interfaces 12, 989-996 (2020). | 80. | Z. Li, S. Chang, H. Zhang, Y. Hu, Y. Huang et al., Flexible lead-free X-ray detector from metal-organic frameworks. Nano Lett. 21, 6983-6989 (2021). | 81. | W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11, 726-732 (2017). | 82. | W. Yuan, G. Niu, Y. Xian, H. Wu, H. Wang et al., In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-Ray detector. Adv. Funct. Mater. 29, 1900234 (2019). | 83. | L. Yin, H. Wu, W. Pan, B. Yang, P. Li et al., Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection. Adv. Opt. Mater. 7, 1900491 (2019). | 84. | B. Yang, W. Pan, H. Wu, G. Niu, J.-H. Yuan et al., Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 10, 1989 (2019). | 85. | M. Keshavarz, E. Debroye, M. Ottesen, C. Martin, H. Zhang et al., Tuning the structural and optoelectronic properties of Cs2 AgBiBr6 double-perovskite single crystals through alkali-metal substitution. Adv. Mater. 32, e2001878 (2020). | 86. | R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen et al., Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13, 602-608 (2019). | 87. | Y. Xu, B. Jiao, T.-B. Song, C.C. Stoumpos, Y. He et al., Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity. ACS Photonics 6, 196-203 (2019). | 88. | H. Wang, H. Wu, Y. Xian, G. Niu, W. Yuan et al., Controllable CsxFA1-xPbI3 single-crystal morphology via rationally regulating the diffusion and collision of micelles toward high-performance photon detectors. ACS Appl. Mater. Interfaces 11, 13812-13821 (2019). | 89. | Q. Sun, Y. Xu, H. Zhang, B. Xiao, X. Liu et al., Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. J. Mater. Chem. A 6, 23388-23395 (2018). | 90. | Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui et al., Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 3, 180-196 (2020). | 91. | S. Tie, W. Zhao, D. Xin, M. Zhang, J. Long et al., Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 32, e2001981 (2020). | 92. | M. Xia, J.-H. Yuan, G. Niu, X. Du, L. Yin et al., Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability. Adv. Funct. Mater. 30, 1910648 (2020). | 93. | H. Li, J. Song, W. Pan, D. Xu, W.-A. Zhu et al., Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32, e2003790 (2020). | 94. | C. Ji, S. Wang, Y. Wang, H. Chen, L. Li et al., 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Adv. Funct. Mater. 30, 1905529 (2020). | 95. | L. Yao, G. Niu, L. Yin, X. Du, Y. Lin et al., Bismuth halide perovskite derivatives for direct X-ray detection. J. Mater. Chem. C 8, 1239-1243 (2020). | 96. | Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei et al., Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed. 59, 14896-14902 (2020). | 97. | Z. Xu, X. Liu, Y. Li, X. Liu, T. Yang et al., Exploring lead-free hybrid double perovskite crystals of (BA)2 CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew. Chem. Int. Ed. 58, 15757-15761 (2019). | 98. | X. Song, Q. Cui, Y. Liu, Z. Xu, H. Cohen et al., Metal-free halide perovskite single crystals with very long charge lifetimes for efficient X-ray imaging. Adv. Mater. 32, e2003353 (2020). | 99. | W. Guo, X. Liu, S. Han, Y. Liu, Z. Xu et al., Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection. Angew. Chem. Int. Ed. 59, 13879-13884 (2020). | 100. | H. Du, L.E. Antonuk, Y. El-Mohri, Q. Zhao, Z. Su et al., Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2. Phys. Med. Biol. 53, 1325 (2008). | 101. | S. Tokuda, H. Kishihara, S. Adachi, T. Sato, Preparation and characterization of polycrystalline CdZnTe films for large-area, high-sensitivity X-ray detectors. J. Mater. Sci. Mater. Electron. 15, 1-8 (2004). | 102. | D.M. Trucchi, P. Allegrini, A. Bellucci, P. Calvani, A. Galbiati et al., Resistant and sensitive single-crystal diamond dosimeters for ionizing radiation. Nucl. Instrum. Meth. Phys. Res. Sect A Accel. Spectrometers Detect. Assoc. Equip. 718, 373-375 (2013). | 103. | M. Girolami, M. Bosi, V. Serpente, M. Mastellone, L. Seravalli et al., Orthorhombic undoped κ-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J. Mater. Chem. C 11, 3759-3769 (2023). | 104. | H.M. Thirimanne, K. D.G.I. Jayawardena, A.J. Parnell, R.M.I. Bandara, A. Karalasingam et al., High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9, 2926 (2018). | 105. | R. Zhuang, S. Cai, Z. Mei, H. Liang, N. Zhao et al., Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection. Nat. Commun. 14, 1621 (2023). | 106. | Y. Liu, X. Zheng, Y. Fang, Y. Zhou, Z. Ni et al., Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 12, 1686 (2021). |
|
No related articles found! |
|
|
|
|