|
|
Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives |
Yirong Wang1,2, Yaohui Cheng3, Chunchun Yin1, Jinming Zhang1( ), Jingxuan You1,2, Jizheng Wang1,2( ), Jinfeng Wang4, Jun Zhang1,2 |
1 Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, People’s Republic of China 2 University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China 3 Nanjing University, Nanjing, 210023, People’s Republic of China 4 Wuhan Textile University, Wuhan, 430200, People’s Republic of China |
|
|
Abstract In perovskite solar cells (PSCs), the inherent defects of perovskite film and the random distribution of excess lead iodide (PbI2) prevent the improvement of efficiency and stability. Herein, natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering. The cationic cellulose derivative C-Im-CN with cyano-imidazolium (Im-CN) cation and chloride anion prominently promotes the crystallization process, grain growth, and directional orientation of perovskite. Meanwhile, excess PbI2 is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains. These effects result in suppressing defect formation, decreasing grain boundaries, enhancing carrier extraction, inhibiting non-radiative recombination, and dramatically prolonging carrier lifetimes. Thus, the PSCs exhibit a high power conversion efficiency of 24.71%. Moreover, C-Im-CN has multiple interaction sites and polymer skeleton, so the unencapsulated PSCs maintain above 91.3% of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions. The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs.
|
Received: 02 January 2024
Published: 29 April 2024
|
Corresponding Authors:
Jinming Zhang, Jizheng Wang
|
|
|
|
|
Fig. 1 PSCs passivated with cellulose derivatives: a schematic illustration of PSCs passivated with cellulose derivatives; b SEM images of the surfaces of perovskites passivated with different cellulose derivatives (Scale bar: 500 nm); c cross-sectional SEM images of the control PSC and PSC passivated with C-Im-CN (PVSK/C-Im-CN) (Scale bar: 500 nm); d element contents of the plate-like crystallite and the white flake on the grain surface in PVSK/C-Im-CN; grazing incidence wide-angle X-ray scattering (GIWAXS) patterns of e the control PSC and f PVSK/C-Im-CN; Crystallite orientation fits to the characteristic peaks of PbI2 (orange line) and PVSK (green line) in g the control PSC and h PVSK/C-Im-CN; i crystallite orientation of the control PSC and PVSK/C-Im-CN at (110) and (001)* crystal faces; and j schematic illustration of perovskites passivated with different cellulose derivatives. (Note: (110) and (220) belong to PVSK; (001)* is assigned to PbI2)
|
|
Fig. 2 Mechanism of cellulose derivatives passivating perovskite: a chemical structure of C-Im-CN and perovskite; b Pb 4f high-resolution XPS spectra of control and PVSK/C-Im-CN; c I 3d high-resolution XPS spectra of control and PVSK/C-Im-CN; d Raman spectra of control and PVSK/C-Im-CN; e zeta potentials of C-Im-CN, FAI, MACl, MABr, C-Im-CN/FAI, C-Im-CN/MACl, and C-Im-CN/MABr; f mass spectra of PbI2/C-Im-CN solution; g FTIR spectra of PbI2, C-Im-CN, and PbI2/C-Im-CN; h 1H-NMR spectra of PbI2, C-Im-CN, and PbI2/C-Im-CN; i N 1s high-resolution XPS spectra of control and perovskites passivated with cellulose derivatives; j FTIR spectra of FAI, C-Im-CN, and FAI/C-Im-CN; k 1H-NMR spectra of FAI and FAI/C-Im-CN; and (I) schematic illustration of the interactions between C-Im-CN and perovskite
|
|
Fig. 3 Photovoltaic performance of control and perovskites passivated with cellulose derivatives: a J-V curves of PSCs; b J-V curves of PSCs measured at reverse and forward scans; c distribution graphs of PCEs (Box plots and normal distribution curves are displayed next to the data points. Each case is collected from 40 independent devices.); d J-V curves of PSCs of PVSK/C-Im-CN plus measured at reverse and forward scans; e IPCE and the integrated JSC of control plus and PVSK/C-Im-CN plus; f maximal steady-state photocurrent and stabilized PCE of PVSK/C-Im-CN plus; and g photovoltaic efficiency of PSCs based on different cellulose additives in recent years
|
|
Fig. 4 Characterization of perovskites with or without cellulose derivatives: a steady-state PL spectra of perovskites with or without cellulose derivatives; b PL lifetime spectra of perovskites; c dark J-V curves for the electron only devices with the structure of ITO/SnO2/perovskite/PCBM/Ag; d dark J-V curves for the hole only devices with the structure of ITO/PEDOT:PSS/perovskite/Spiro-OMETAD; e UV-vis absorption spectra of perovskites; f energy level illustration of the main functional layers in PSCs; g Nyquist plots of PSCs; and h VOC and i JSC response under different light intensities
|
|
Fig. 5 Device stability test of the control and PVSK/C-Im-CN: a and b SEM images of the surface and cross-section of the control under air environment after 14-30 days (RH = 25%-30%, T = 20-25 °C); c and d SEM images of the surface and cross-section of the PVSK/C-Im-CN under air environment after 14-30 days (RH = 25%-30%, T = 20-25 °C); e XRD spectra of the control and PVSK/C-Im-CN under air environment for different days (RH = 25%-30%, T = 20-25 °C); f Ratio of PbI2/perovskite crystal peak of the control and PVSK/C-Im-CN; g and h Pb 4f high-resolution XPS spectra of the control and PVSK/C-Im-CN before and after the aging period under air environment (RH = 25%-30%, T = 20-25 °C); i Stability of the control and PVSK/C-Im-CN devices under 3,000 h (RH = 25%-30%, T = 20-25 °C); j Stability of the control and the PVSK/C-Im-CN devices under high humidity condition of 300 h (RH = 85±5%, T = 85 °C)
|
1. | A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, 4424 (2016). | 2. | G. Tang, F. Yan, Recent progress of flexible perovskite solar cells. Nano Today 39, 101155 (2021). | 3. | R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino et al., Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016). | 4. | A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009). | 5. | Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531-534 (2022). | 6. | J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013). | 7. | N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015). | 8. | National Renewable Energy Laboratory, "Best research-cell efficiency chart" (NREL, 2023); | 9. | K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756-771 (2022). | 10. | S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404-409 (2023). | 11. | X. Gu, W. Xiang, Q. Tian, S.F. Liu, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60, 23164-23170 (2021). | 12. | H. Yu, H. Lu, F. Xie, S. Zhou, N. Zhao, Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv. Funct. Mater. 26, 1411-1419 (2016). | 13. | S. Zhang, J. He, X. Guo, J. Su, Z. Lin et al., Crystallization dynamic control of perovskite films with suppressed phase transition and reduced defects for highly efficient and stable all-inorganic perovskite solar cells. ACS Mater. Lett. 5, 1497-1505 (2023). | 14. | S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang et al., Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467-480 (2021). | 15. | H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569-586 (2023). | 16. | Y. Gao, F. Ren, D. Sun, S. Li, G. Zheng et al., Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 16, 2295-2303 (2023). | 17. | F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich et al., Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30, 1702905 (2018). | 18. | L. Zuo, H. Guo, D.W. DeQuilettes, S. Jariwala, N. De Marco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017). | 19. | M. Wu, Y. Duan, L. Yang, P. You, Z. Li et al., Multifunctional small molecule as buried interface passivator for efficient planar perovskite solar cells. Adv. Funct. Mater. 33, 2300128 (2023). | 20. | Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460-466 (2019). | 21. | X. Zhu, S. Yang, Y. Cao, L. Duan, M. Du et al., Ionic-liquid-perovskite capping layer for stable 24.33%-efficient solar cell. Adv. Energy Mater. 12, 2103491 (2022). | 22. | Y. Shen, G. Xu, J. Li, X. Lin, F. Yang et al., Functional ionic liquid polymer stabilizer for high-performance perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202300690 (2023). | 23. | Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu et al., Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells. Adv. Mater. 34, e2106750 (2022). | 24. | Y. Wang, Y. Yang, N. Li, M. Hu, S.R. Raga et al., Ionic liquid stabilized perovskite solar modules with power conversion efficiency exceeding 20%. Adv. Funct. Mater. 32, 2204396 (2022). | 25. | J.H. Lee, B. Nketia-Yawson, J.J. Lee, J.W. Jo, Ionic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics. Chem. Eng. J. 446, 137351 (2022). | 26. | J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu et al., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390-395 (2021). | 27. | Y. Xu, X. Guo, Z. Lin, Q. Wang, J. Su et al., Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202306229 (2023). | 28. | K. Kim, J. Han, S. Lee, S. Kim, J.-M. Choi et al., Liquid-state dithiocarbonate-based polymeric additives with monodispersity rendering perovskite solar cells with exceptionally high certified photocurrent and fill factor. Adv. Energy Mater. 13, 2203742 (2023). | 29. | T.H. Han, J.W. Lee, C. Choi, S. Tan, C. Lee et al., Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019). | 30. | Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou et al., A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016). | 31. | X. Wang, C. Yao, F. Wang, Z. Li, Cellulose-based nanomaterials for energy applications. Small 13, 201702240 (2017). | 32. | D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358-3393 (2005). | 33. | C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642-666 (2020). | 34. | J. You, X. Zhang, Q. Nan, K. Jin, J. Zhang et al., Aggregation-regulated room-temperature phosphorescence materials with multi-mode emission, adjustable excitation-dependence and visible-light excitation. Nat. Commun. 14, 4163 (2023). | 35. | Y. Xie, H. Lu, J. Huang, H. Xie, Natural materials for sustainable organic solar cells: status and challenge. Adv. Funct. Mater. 33, 2213910 (2023). | 36. | R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang et al., Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10, 795 (2019). | 37. | J. Yang, S. Xiong, T. Qu, Y. Zhang, X. He et al., Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells. ACS Appl. Mater. Interfaces 11, 13491-13498 (2019). | 38. | F. Bisconti, A. Giuri, L. Dominici, S. Carallo, E. Quadrivi et al., Managing transparency through polymer/perovskite blending: a route toward thermostable and highly efficient, semi-transparent solar cells. Nano Energy 89, 106406 (2021). | 39. | X. Zhu, R. Lin, H. Gu, H. Hu, Z. Liu et al., Ecofriendly hydroxyalkyl cellulose additives for efficient and stable MAPbI3-Based inverted perovskite solar cells. Energy Environ. Mater. 6, e12426 (2023). | 40. | J. Liu, Q. He, J. Bi, M. Lei, W. Zhang et al., Remarkable quality improvement of CsPbIBr2 perovskite film by cellulose acetate addition for efficient and stable carbon-based inorganic perovskite solar cells. Chem. Eng. J. 424, 130324 (2021). | 41. | Y.-R. Wang, C.-C. Yin, J.-M. Zhang, J. Wu, J. Yu et al., Functional cellulose materials fabricated by using ionic liquids as the solvent. Chin. J. Polym. Sci. 41, 483-499 (2023). | 42. | K.N. Onwukamike, S. Grelier, E. Grau, H. Cramail, M.A.R. Meier, Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustain. Chem. Eng. 7, 1826-1840 (2019). | 43. | Y. Cheng, Y. Wang, X. Zhang, J. Zhang, Z. He et al., Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing. Nano Res. 16, 7171-7179 (2023). | 44. | V. Gaydarov, Z. Chen, G. Zamfirova, M.A. Söylemez, J. Zhang et al., Micromechanical and positron annihilation lifetime study of new cellulose esters with different topological structures. Carbohydr. Polym. 219, 56-62 (2019). | 45. | R. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui et al., Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143, 10624-10632 (2021). | 46. | T. Duong, H. Pham, T.C. Kho, P. Phang, K.C. Fong et al., High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10, 1903553 (2020). | 47. | Y. Liu, S. Akin, L. Pan, R. Uchida, N. Arora et al., Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22. Sci. Adv. 5, eaaw2543 (2019). | 48. | H. Wang, F. Ye, J. Liang, Y. Liu, X. Hu et al., Pre-annealing treatment for high-efficiency perovskite solar cells via sequential deposition. Joule 6, 2869-2884 (2022). | 49. | H. Wang, Z. Wang, Z. Yang, Y. Xu, Y. Ding et al., Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater. 32, e2000865 (2020). | 50. | X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021). | 51. | Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y.M. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253-2258 (2016). | 52. | B. Shi, X. Yao, F. Hou, S. Guo, Y. Li et al., Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J. Phys. Chem. C 122, 21269-21276 (2018). | 53. | M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33, e2105290 (2021). | 54. | G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15, 681-689 (2021). | 55. | W. Shao, H. Wang, F. Ye, C. Wang, C. Wang et al., Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci 16, 252-264 (2023). | 56. | H. Cui, L. Huang, S. Zhou, C. Wang, X. Hu et al., Lead halide coordination competition at buried interfaces for low VOC-deficits in wide-bandgap perovskite solar cells. Energy Environ. Sci. 16, 5992-6002 (2023). | 57. | N. Preda, L. Mihut, M. Baibarac, I. Baltog, R. Ramer et al., Films and crystalline powder of PbI2 intercalated with ammonia and pyridine. J. Mater. Sci. Mater. Electron. 20, 465-470 (2009). | 58. | L. Liu, J. Tang, S. Li, Z. Yu, J. Du et al., Multi-site intermolecular interaction for in situ formation of vertically orientated 2D passivation layer in highly efficient perovskite solar cells. Adv. Funct. Mater. 33, 2303038 (2023). | 59. | Y. Ge, H. Wang, C. Wang, C. Wang, H. Guan et al., Intermediate phase engineering with 2, 2-azodi(2-methylbutyronitrile) for efficient and stable perovskite solar cells. Adv. Mater. 35, e2210186 (2023). | 60. | J. Chang, E. Feng, H. Li, Y. Ding, C. Long et al., Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Lett. 15, 164 (2023). | 61. | K. Meng, X. Wang, Q. Xu, Z. Li, Z. Liu et al., In situ observation of crystallization dynamics and grain orientation in sequential deposition of metal halide perovskites. Adv. Funct. Mater. 29, 1902319 (2019). | 62. | M.A. Mahmud, H.T. Pham, T. Duong, Y. Yin, J. Peng et al., Combined bulk and surface passivation in dimensionally engineered 2D-3D perovskite films via chlorine diffusion. Adv. Funct. Mater. 31, 2104251 (2021). | 63. | Y. Yu, C. Wang, C.R. Grice, N. Shrestha, D. Zhao et al., Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett. 2, 1177-1182 (2017). | 64. | H. Zhang, M. Kramarenko, G. Martínez-Denegri, J. Osmond, J. Toudert et al., Formamidinium incorporation into compact lead iodide for low band gap perovskite solar cells with open-circuit voltage approaching the radiative limit. ACS Appl. Mater. Interfaces 11, 9083-9092 (2019). | 65. | J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu et al., Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 4, 2913-2921 (2019). | 66. | P. Liu, Z. Yu, N. Cheng, C. Wang, Y. Gong et al., Low-cost and Efficient Hole-Transport-Material-free perovskite solar cells employing controllable electron-transport layer based on P25 nanoparticles. Electrochim. Acta 213, 83-88 (2016). | 67. | J. He, C.F. Ng, K. Young Wong, W. Liu, T. Chen, Photostability and moisture stability of CH3 NH3 PbI3-based solar cells by ethyl cellulose. ChemPlusChem 81, 1292-1298 (2016). | 68. | H.-Y. Chu, J.-Y. Hong, C.-F. Huang, J.-Y. Wu, T.-L. Wang et al., Enhanced photovoltaic properties of perovskite solar cells by the addition of cellulose derivatives to MAPbI3 based photoactive layer. Cellulose 26, 9229-9239 (2019). | 69. | P. Zhang, N. Gu, L. Song, W.-H. Chen, P. Du et al., Bifunctional green cellulose derivatives employed for high efficiency and stable perovskite solar cells under ambient environment. J. Alloys Compd. 886, 161247 (2021). | 70. | B. Xiao, Y. Qian, X. Li, Y. Tao, Z. Yi et al., Enhancing the stability of planar perovskite solar cells by green and inexpensive cellulose acetate butyrate. J. Energy Chem. 76, 259-265 (2023). | 71. | Z. Zhang, C. Wang, F. Li, L. Liang, L. Huang et al., Bifunctional cellulose interlayer enabled efficient perovskite solar cells with simultaneously enhanced efficiency and stability. Adv. Sci. 10, e2207202 (2023). | 72. | J. Liu, N. Liu, G. Li, Y. Wang, Z. Wang et al., Cinnamate-functionalized cellulose nanocrystals as interfacial layers for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 15, 1348-1357 (2023). | 73. | F. Wu, S. Mabrouk, M. Han, Y. Tong, T. Zhang et al., Effects of electron- and hole-current hysteresis on trap characterization in organo-inorganic halide perovskite. J. Energy Chem. 76, 414-420 (2023). | 74. | E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith et al., Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5, 376-384 (2020). | 75. | B. Liu, Y. Wang, Y. Wu, Y. Zhang, J. Lyu et al., Vitamin natural molecule enabled highly efficient and stable planar n-p homojunction perovskite solar cells with efficiency exceeding 24.2%. Adv. Energy Mater. 13, 2203352 (2023). | 76. | S.M. Abdulrahim, Z. Ahmad, J. Bahadra, N.J. Al-Thani, Electrochemical impedance spectroscopy analysis of hole transporting material free mesoporous and planar perovskite solar cells. Nanomaterials (Basel) 10, 1635 (2020). | 77. | Y. Liu, M. Bag, L.A. Renna, Z.A. Page, P. Kim et al., Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater. 6, 1501606 (2016). | 78. | G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang et al., Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv. Funct. Mater. 28, 1804427 (2018). | 79. | K. Liu, S. Rafique, S.F. Musolino, Z. Cai, F. Liu et al., Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 7, 1033-1050 (2023). |
|
[1] |
Wenhao Zhao, Pengfei Guo, Jiahao Wu, Deyou Lin, Ning Jia, Zhiyu Fang, Chong Liu, Qian Ye, Jijun Zou, Yuanyuan Zhou, Hongqiang Wang. TiO2 Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 191-. |
[2] |
Juan Zhang, Xiaofei Ji, Xiaoting Wang, Liujiang Zhang, Leyu Bi, Zhenhuang Su, Xingyu Gao, Wenjun Zhang, Lei Shi, Guoqing Guan, Abuliti Abudula, Xiaogang Hao, Liyou Yang, Qiang Fu, Alex K.-Y. Jen, Linfeng Lu. Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation[J]. Nano-Micro Letters, 2024, 16(1): 190-. |
[3] |
Jingjing Liu, Biao Shi, Qiaojing Xu, Yucheng Li, Yuxiang Li, Pengfei Liu, Zetong SunLi, Xuejiao Wang, Cong Sun, Wei Han, Diannan Li, Sanlong Wang, Dekun Zhang, Guangwu Li, Xiaona Du, Ying Zhao, Xiaodan Zhang. Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide[J]. Nano-Micro Letters, 2024, 16(1): 189-. |
[4] |
Marco Girolami, Fabio Matteocci, Sara Pettinato, Valerio Serpente, Eleonora Bolli, Barbara Paci, Amanda Generosi, Stefano Salvatori, Aldo Di Carlo, Daniele M. Trucchi. Metal-Halide Perovskite Submicrometer-Thick Films for Ultra-Stable Self-Powered Direct X-Ray Detectors[J]. Nano-Micro Letters, 2024, 16(1): 182-. |
[5] |
Na Yu, Idris Temitope Bello, Xi Chen, Tong Liu, Zheng Li, Yufei Song, Meng Ni. Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells[J]. Nano-Micro Letters, 2024, 16(1): 177-. |
[6] |
Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, Yulin Yang. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 171-. |
[7] |
Yanming Li, Ming Deng, Xuanyu Zhang, Lei Qian, Chaoyu Xiang. Proton-Prompted Ligand Exchange to Achieve High-Efficiency CsPbI3 Quantum Dot Light-Emitting Diodes[J]. Nano-Micro Letters, 2024, 16(1): 105-. |
|
|
|
|