|
|
Durable Ru Nanocrystal with HfO2 Modification for Acidic Overall Water Splitting |
Xiangkai Kong1,2( ), Jie Xu2,4, Zhicheng Ju1( ), Changle Chen3( ) |
1 School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People’s Republic of China 2 Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People’s Republic of China 3 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, People’s Republic of China 4 School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, People’s Republic of China |
|
|
Abstract Durable and efficient bi-functional catalyst, that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition, are highly desired for the commercialization of proton exchange membrane water electrolysis. Herein, we report a robust L-Ru/HfO2 heterostructure constructed via confining crystalline Ru nanodomains by HfO2 matrix. When assembled with a proton exchange membrane, the bi-functional L-Ru/HfO2 catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm-2 current density, prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO2 electrolyzer. It is revealed that the synergistic effect of HfO2 modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru. More importantly, this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates. As a result, the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step (*O→*OOH). Both of water adsorption and dissociation (Volmer step) are strengthened, while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure (Tafel step). Consequently, the activity and stability of acidic overall water splitting are simultaneously enhanced.
|
Received: 20 December 2023
Published: 30 April 2024
|
Corresponding Authors:
Xiangkai Kong, Zhicheng Ju, Changle Chen
|
|
|
|
|
Fig. 1 A Schematic illustration for the synthesis of L-Ru/HfO2 catalyst. Characterization of S-Ru/HfO2: B TEM and C HRTEM images, D SAED pattern. Characterization of L-Ru/HfO2: E TEM and F HRTEM images, G SAED pattern. HAADF-STEM images and corresponding EDX elemental mapping for H S-Ru/HfO2 and i S-Ru/HfO2
|
|
Fig. 2 A Schematic illustration of the interaction between Ru and HfO2. B HRTEM images for L-Ru/HfO2. Physical characterizations on these samples: C Raman spectra, D High resolution XPS spectra of Ru 3p orbital, E XANES spectra, F Ru K-edge EXAFS spectra, and WT-EXAFS spectra for G L-Ru/HfO2 and H S-Ru/HfO2
|
|
Fig. 3 The electrochemical measurements of these samples in the three-electrode system in 0.5 M H2SO4 solution: A LSV curves, B the chronoamperometry measurement with the i-t response at 10 mA cm-2, and the LSV polarization curves recorded before and after were inset in, and C the first cycle of CV scan during OER activation. D The digital photos observed on electrode surface during the first cycle of CV scan for each sample activation. E OER LSV curves for these sampled measured in 1.0 M KOH and 1.0 M PBS. F HER LSV curves for these sampled measured in 0.5 M H2SO4 solution. G Comparison of LSV curves obtained during OER and HER operation in the KSCN involved electrolyte. H The digital image of the assembled PEM electrolyzer. I Polarization curves achieved on these catalysts assembled PEM electrolyzers and durability estimation on L-Ru/HfO2||L-Ru/HfO2 coupled PEM electrolyzer. J Comparison of η10 for acidic OER on L-Ru/HfO2 with recently reported Ru-based catalysts. The detailed information for these compared catalysts can be found in the supporting information file.
|
|
Fig. 4 In situ Raman spectra recorded on A L-Ru/HfO2 and B L-Ru. C, D The magnified spectra of corresponding vibration regions for Fig. A and B, respectively. The in situ high-resolution XPS spectra of Ru 3p signals under an applied voltage of 2.0 V for E L-Ru/HfO2 and F S-Ru/HfO2
|
|
Fig. 5 DFT calculations. A AEM and DSM paths of OER on the catalyst surface. B Free energy change diagrams for OER over Ru/HfO2 catalyst through different paths. C Charge density difference at the interface of Ru/HfO2, with the warm color and cold color representing charge accumulation and depletion, respectively. D Calculated projected DOS with d-band center highlighted for the active sites. E Adsorption energy of water molecule on these catalysts. F FTIR profiles of L-Ru and L-Ru/HfO2 before and after the water vapor treatment. G Water dissociation energy diagrams (inset: corresponding optimized Ru/HfO2 structures for water dissociation, with gray, light green, red and white balls representing Ru, Hf, O, and H atoms, respectively)
|
1. | J. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309-1314 (2019). | 2. | S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331-336 (2021). | 3. | D. Yan, C. Mebrahtu, S. Wang, R. Palkovits, Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output. Angew. Chem. Int. Ed. 62, e202214333 (2023). | 4. | Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). | 5. | H. Song, M. Wu, Z. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234-7244 (2021). | 6. | K. Yu, H. Yang, H. Zhang, H. Huang, Z. Wang et al., Immobilization of oxyanions on the reconstructed heterostructure evolved from a bimetallic oxysulfide for the promotion of oxygen evolution reaction. Nano-Micro Lett. 15, 186 (2023). | 7. | D. Yan, C. Xia, W. Zhang, Q. Hu, C. He et al., Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12, 2202317 (2022). | 8. | C. Li, S.H. Kim, H.Y. Lim, Q. Sun, Y. Jiang et al., Self-accommodation induced electronic metal-support interaction on ruthenium site for alkaline hydrogen evolution reaction. Adv. Mater. 35, e2301369 (2023). | 9. | J. Xu, Y. Feng, P. Wu, S. Tian, Z. Fang et al., Embedded ruthenium nanoparticles within exfoliated nanosheets of Ti3C2Tx for hydrogen evolution. ACS Appl. Nano Mater.. 5, 14241-14245 (2022). | 10. | B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). | 11. | X. Kong, C. Zhang, S.Y. Hwang, Q. Chen, Z. Peng, Free-standing holey Ni(OH)2 nanosheets with enhanced activity for water oxidation. Small 13, 1700334 (2017). | 12. | H.N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat. Catal. 1, 841-851 (2018). | 13. | T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017). | 14. | Y. Li, T. Xu, Q. Huang, L. Zhu, Y. Yan et al., C60 fullerenol to stabilize and activate Ru nanoparticles for highly efficient hydrogen evolution reaction in alkaline media. ACS Catal. 13, 7597-7605 (2023). | 15. | H. Shi, H. Liang, F. Ming, Z. Wang, Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem. Int. Ed. 56, 573-577 (2017). | 16. | Q. Liang, Q. Li, L. Xie, H. Zeng, S. Zhou et al., Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano 16, 7993-8004 (2022). | 17. | L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15, 228 (2023). | 18. | C.-F. Li, T.-Y. Shuai, L.-R. Zheng, H.-B. Tang, J.-W. Zhao et al., The key role of carboxylate ligands in Ru@Ni-MOFs/NF in promoting water dissociation kinetics for effective hydrogen evolution in alkaline media. Chem. Eng. J. 451, 138618 (2023). | 19. | P. Bhanja, Y. Kim, B. Paul, Y.V. Kaneti, A.A. Alothman et al., Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: efficient electrocatalysts for oxygen evolution reaction. Chem. Eng. J. 405, 126803 (2021). | 20. | N.L.W. Septiani, Y.V. Kaneti, Y. Guo, B. Yuliarto, X. Jiang et al., Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion application. ChemSusChem 13, 1645-1655 (2020). | 21. | Y. Guo, C. Zhang, J. Zhang, K. Dastafkan, K. Wang et al., Metal-organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain. Chem. Eng. 9, 2047-2056 (2021). | 22. | X. Gu, M. Yu, S. Chen, X. Mu, Z. Xu et al., Coordination environment of Ru clusters with in situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 102, 107656 (2022). | 23. | N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15, 185 (2023). | 24. | D. Wu, D. Chen, J. Zhu, S. Mu, Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17, e2102777 (2021). | 25. | G. Li, H. Jang, S. Liu, Z. Li, M.G. Kim et al., The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 13, 1270 (2022). | 26. | J. Xu, S. Wang, C. Yang, T. Li, Q. Liu et al., Free-standing two-dimensional ruthenium-beryllium nanosheets for alkaline hydrogen evolution. Chem. Eng. J. 421, 129741 (2021). | 27. | S. Li, D. Liu, G. Wang, P. Ma, X. Wang et al., Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 15, 189 (2023). | 28. | F. Bao, Z. Yang, Y. Yuan, P. Yu, G. Zeng et al., Synergistic cascade hydrogen evolution boosting via integrating surface oxophilicity modification with carbon layer confinement. Adv. Funct. Mater. 32, 2108991 (2022). | 29. | S. Hao, M. Liu, J. Pan, X. Liu, X. Tan et al., Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 11, 5368 (2020). | 30. | A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457-465 (2017). | 31. | P. Gayen, S. Saha, K. Bhattacharyya, V.K. Ramani, Oxidation state and oxygen-vacancy-induced work function controls bifunctional oxygen electrocatalytic activity. ACS Catal. 10, 7734-7746 (2020). | 32. | C. Roy, R.R. Rao, K.A. Stoerzinger, J. Hwang, J. Rossmeisl et al., Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett. 3, 2045-2051 (2018). | 33. | S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao et al., Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 10, 1152-1160 (2020). | 34. | J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater., e1801351 (2018). | 35. | X. Cui, P. Ren, C. Ma, J. Zhao, R. Chen et al., Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 32, e1908126 (2020). | 36. | J. Wang, H. Yang, F. Li, L. Li, J. Wu et al., Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 8, eabl9271 (2022). | 37. | M.A. Hubert, A.M. Patel, A. Gallo, Y. Liu, E. Valle et al., Acidic oxygen evolution reaction activity-stability relationships in Ru-based pyrochlores. ACS Catal. 10, 12182-12196 (2020). | 38. | D. Zhang, M. Li, X. Yong, H. Song, G.I.N. Waterhouse et al., Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 14, 2517 (2023). | 39. | A.M. Harzandi, S. Shadman, A.S. Nissimagoudar, D.Y. Kim, H.-D. Lim et al., Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 11, 2003448 (2021). | 40. | Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang et al., Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021). | 41. | D. Huang, K. Wang, L. Yu, T.H. Nguyen, S. Ikeda et al., Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film. ACS Energy Lett. 3, 1875-1881 (2018). | 42. | W. Banerjee, A. Kashir, S. Kamba, Hafnium oxide (HfO2) - A multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small 18, e2107575 (2022). | 43. | Y. Wang, Q. Lu, F. Li, D. Guan, Y. Bu, Atomic-scale configuration enables fast hydrogen migration for electrocatalysis of acidic hydrogen evolution. Adv. Funct. Mater. 33, 2213523 (2023). | 44. | J. Xu, C. Chen, X. Kong, Ru-O-Cu center constructed by catalytic growth of Ru for efficient hydrogen evolution. Nano Energy 111, 108403 (2023). | 45. | J. Xu, X. Kong, Amorphous/crystalline heterophase ruthenium nanosheets for pH-universal hydrogen evolution. Small Methods 6, 2101432 (2022). | 46. | P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater., 34, 2311983 (2024). | 47. | G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang et al., A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 10, 4855 (2019). | 48. | G. Yan, Y. Wang, Z. Zhang, Y. Dong, J. Wang et al., Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 12, 49 (2020). | 49. | M. Su, J. Shi, Q. Kang, D. Lai, Q. Lu et al., One-step multiple structure modulations on sodium vanadyl phosphate@carbon towards ultra-stable high rate sodium storage. Chem. Eng. J. 432, 134289 (2022). | 50. | A. Pei, G. Li, L. Zhu, Z. Huang, J. Ye et al., Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation. Adv. Funct. Mater. 32, 2208587 (2022). | 51. | L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin et al., Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 10, 4849 (2019). | 52. | D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6, 4343-4372 (2019). | 53. | Y. Hu, C. Hu, A. Du, T. Xiao, L. Yu et al., Interfacial evolution on co-based oxygen evolution reaction electrocatalysts probed by using in situ surface-enhanced Raman spectroscopy. Anal. Chem. 95, 1703-1709 (2023). | 54. | J.C. Dong, M. Su, V. Briega-Martos, L. Li, J.B. Le et al., Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142, 715-719 (2020). |
|
No related articles found! |
|
|
|
|