|
|
Stretchable, Transparent, and Ultra-Broadband Terahertz Shielding Thin Films Based on Wrinkled MXene Architectures |
Shaodian Yang1, Zhiqiang Lin2, Ximiao Wang1,3, Junhua Huang1, Rongliang Yang1, Zibo Chen1, Yi Jia4, Zhiping Zeng5, Zhaolong Cao1,3, Hongjia Zhu1,3, Yougen Hu2, Enen Li6,7,8, Huanjun Chen1,3( ), Tianwu Wang6,7,8( ), Shaozhi Deng1,3( ), Xuchun Gui1( ) |
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China 2 National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China 3 Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People’s Republic of China 4 China Academy of Aerospace Science and Innovation, Beijing, 100176, People’s Republic of China 5 School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China 6 GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, 510700, People’s Republic of China 7 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China 8 Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, 510700, People’s Republic of China |
|
|
Abstract With the increasing demand for terahertz (THz) technology in security inspection, medical imaging, and flexible electronics, there is a significant need for stretchable and transparent THz electromagnetic interference (EMI) shielding materials. Existing EMI shielding materials, like opaque metals and carbon-based films, face challenges in achieving both high transparency and high shielding efficiency (SE). Here, a wrinkled structure strategy was proposed to construct ultra-thin, stretchable, and transparent terahertz shielding MXene films, which possesses both isotropous wrinkles (height about 50 nm) and periodic wrinkles (height about 500 nm). Compared to flat film, the wrinkled MXene film (8 nm) demonstrates a remarkable 36.5% increase in SE within the THz band. The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm, and an average EMI SE/t of 700 dB μm−1 over the 0.1-10 THz. Theoretical calculations suggest that the wrinkled structure enhances the film's conductivity and surface plasmon resonances, resulting in an improved THz wave absorption. Additionally, the wrinkled structure enhances the MXene films' stretchability and stability. After bending and stretching (at 30% strain) cycles, the average THz transmittance of the wrinkled film is only 0.5% and 2.4%, respectively. The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.
|
Received: 22 November 2023
Published: 02 April 2024
|
Corresponding Authors:
Huanjun Chen, Tianwu Wang, Shaozhi Deng, Xuchun Gui
|
About author:: Shaodian Yang, Zhiqiang Lin, and Ximiao Wang have contributed equally. |
|
|
|
|
Fig. 1 Structural and micromorphology characterization of the Ti3C2Tx MXene films. a Schematic diagram of the wrinkled film, where the visible light can be transmitted, but terahertz waves are effectively isolated. The wrinkled structure results in the enhancement of local SPP, thereby enhancing its absorption of terahertz electromagnetic waves. SEM images of b wrinkle-I film, and c wrinkle-P film. d AFM image of wrinkle-P film. e Digital photo of a wrinkle-I film on a flower. f A wrinkle-I film twisted at the ends. Inset, a lighting LED connected by the twisted wrinkle-I film
|
|
Fig. 2 THz wave shielding performance of the MXene film. a EMI SE of wrinkle-I film and flat film in terahertz (0.1-10.0 THz) and visible light (400-780 nm, corresponding to 750-384 THz) bands. b EMI SE of wrinkle-I films with different thicknesses in a frequency range of 0.2-1.6 THz. c EMI SE (@1.0 THz) and visible light transmittance (@550 nm) of wrinkle-I films with different thicknesses. d Transmittance difference (△T) between wrinkle-I and flat films with different thicknesses. Inset: the transmittance of wrinkle-I and flat films at 1.0 THz. e Comparison of the EMI SE/t versus bandwidth between wrinkle-I film and other THz shielding materials (detailed data thereof are listed in Table S1†)
|
|
Fig. 3 Transmittance, absorption, and mechanism of the MXene films for THz waves. a Transmittance, and b absorption of wrinkle-I and flat films in a frequency range of 0.2-1.6 THz. c Ratio of transmission, absorption, and reflection of wrinkle-I films with different thicknesses. d Transmission amplitude spectra (up) of the wrinkle-I film, obtained by Fourier transforming the transients (down). e Terahertz sheet resistances of the films in 0.2-1.6 THz. f A comparison of theoretical (Woltersdoff equations) and experimental transmittance for wrinkle-I films (8 nm) at different frequency points
|
|
Fig. 4 Stretchability and stability of electromagnetic shielding performance of the wrinkled film. The wrinkle-P film was fabricated by PDMS substrate with pre-stretching strain of 40%. a Relative resistance changes of the wrinkled films during continuous loading and unloading processes. b Relative resistance changes of the wrinkled films under cyclic stretching (left ordinate) and bending (right ordinate). Transmittance of the wrinkle-I film c, and wrinkle-P film d under different tensile strains. Transmittance of the wrinkle-P film under different cycles of e stretching test with a strain of 30%, and f bending test with a bending radius of 8 mm
|
">
|
Fig. 5 Electromagnetic interference shielding application of the wrinkled film in THz imaging. a Optical photos, and b THz imaging photos of an aluminum foil in the shape of Chinese characters of "中" and "大" covered with a PDMS film (left) and wrinkle-I film (right), respectively. c Optical photo, and d THz imaging photo of a wrinkle-P film attached to the surface of a dried bamboo. It demonstrates the transparency, conformability, and THz shielding effect of the film
|
1. | M. Samizadeh Nikoo, E. Matioli, Electronic metadevices for terahertz applications. Nature 614, 451-455 (2023). | 2. | V. Pistore, H. Nong, P.-B. Vigneron, K. Garrasi, S. Houver et al., Millimeter wave photonics with terahertz semiconductor lasers. 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu, China. IEEE, (2021), pp1. | 3. | L. Luo, I. Chatzakis, J. Wang, F.B.P. Niesler, M. Wegener et al., Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014). | 4. | D. Suzuki, S. Oda, Y. Kawano, A flexible and wearable terahertz scanner. Nat. Photonics 10, 809-813 (2016). | 5. | Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). | 6. | Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). | 7. | B. Shi, P. Wang, J. Feng, C. Xue, G. Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly Internet of Things. Nano-Micro Lett. 15, 3 (2022). | 8. | M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter et al., Terahertz quantum sensing. Sci. Adv. 6, eaaz8065 (2020). | 9. | M. Manjappa, A. Solanki, A. Kumar, T.C. Sum, R. Singh, Solution-processed lead iodide for ultrafast all-optical switching of terahertz photonic devices. Adv. Mater. 31, e1901455 (2019). | 10. | A.G. Markelz, D.M. Mittleman, Perspective on terahertz applications in bioscience and biotechnology. ACS Photonics 9, 1117-1126 (2022). | 11. | M. Chen, Y. Wang, Z. Zhao, Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity. ACS Nano 16, 17263-17273 (2022). | 12. | Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, D.M. Mittleman, Single-shot link discovery for terahertz wireless networks. Nat. Commun. 11, 2017 (2020). | 13. | R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). | 14. | R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30, 187-201 (1988). | 15. | N. van Hoof, M. Parente, A. Baldi, J.G. Rivas, Terahertz time-domain spectroscopy and near-field microscopy of transparent silver nanowire networks. Adv. Opt. Mater. 8, 1900790 (2020). | 16. | S. Hou, W. Ma, G. Li, Y. Zhang, Y. Ji et al., Excellent Terahertz shielding performance of ultrathin flexible Cu/graphene nanolayered composites with high stability. J. Mater. Sci. Technol. 52, 136-144 (2020). | 17. | B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). | 18. | H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146-9159 (2020). | 19. | J. Bang, J. Ahn, J. Zhang, T.H. Ko, B. Park et al., Stretchable and directly patternable double-layer structure electrodes with complete coverage. ACS Nano 16, 12134-12144 (2022). | 20. | S. Park, J. Bang, B.-S. Kim, S.J. Oh, J.-H. Choi, Metallic fusion of nanocrystal thin films for flexible and high-performance electromagnetic interference shielding materials. Mater. Today Adv. 12, 100177 (2021). | 21. | Y.I. Jhon, J.H. Lee, Y.M. Jhon, Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: density functional theory study. Mater. Today Commun. 32, 103917 (2022). | 22. | L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). | 23. | J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16, 6700-6711 (2022). | 24. | Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465-1474 (2021). | 25. | H. Wan, N. Liu, J. Tang, Q. Wen, X. Xiao, Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15, 13646-13652 (2021). | 26. | T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10?THz band. Nat. Photonics 17, 622-628 (2023). | 27. | V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau et al., Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. B 89, 235428 (2014). | 28. | Q. Zou, W. Guo, L. Zhang, L. Yang, Z. Zhao et al., MXene-based ultra-thin film for terahertz radiation shielding. Nanotechnology 31, 505710 (2020). | 29. | A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). | 30. | T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). | 31. | J.T. Hong, D.J. Park, J.Y. Moon, S.B. Choi, J.K. Park et al., Terahertz wave applications of single-walled carbon nanotube films with high shielding effectiveness. Appl. Phys. Express 5, 015102 (2012). | 32. | G. Li, N. Amer, H.A. Hafez, S. Huang, D. Turchinovich et al., Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Lett. 20, 636-643 (2020). | 33. | G. Choi, F. Shahzad, Y.-M. Bahk, Y.M. Jhon, H. Park et al., Enhanced terahertz shielding of MXenes with nano-metamaterials. Adv. Opt. Mater. 6, 1701076 (2018). | 34. | B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023). | 35. | Y. Du, Z. Yan, W. You, Q. Men, G. Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023). | 36. | B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023). | 37. | J. Li, H. Sun, S.-Q. Yi, K.-K. Zou, D. Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2022). | 38. | Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019). | 39. | R. Yang, H. Song, Z. Zhou, S. Yang, X. Tang et al., Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 15, 8345-8354 (2023). | 40. | S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570-23579 (2022). | 41. | A. Javili, A.D. Bakiler, A displacement-based approach to geometric instabilities of a film on a substrate. Math. Mech. Solids 24, 2999-3023 (2019). | 42. | B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5, 6954-6961 (2017). | 43. | Z. Huang, H. Chen, S. Xu, L.Y. Chen, Y. Huang et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Opt. Mater. 6, 1801165 (2018). | 44. | A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 369, 446-450 (2020). | 45. | F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137-1140 (2016). | 46. | S. Venkatachalam, D. Bertin, G. Ducournau, J.F. Lampin, D. Hourlier, Kapton-derived carbon as efficient terahertz absorbers. Carbon 100, 158-164 (2016). | 47. | J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9, 44609-44616 (2017). | 48. | Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14, 2109-2117 (2020). | 49. | C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021). | 50. | J.H. Yim, M.A. Seo, Y.H. Ahn, F. Rotermund, D.S. Kim et al., Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films. 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves. Pasadena, CA, USA. IEEE, (2008), pp1. | 51. | A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018). | 52. | M.M. Hasan, M.M. Hossain, H.K. Chowdhury, Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A 9, 3231-3269 (2021). | 53. | X. Guo, N. Li, C. Wu, X. Dai, R. Qi et al., Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. 34, e2201120 (2022). |
|
[1] |
Ting-Ting Liu, Qi Zheng, Wen-Qiang Cao, Yu-Ze Wang, Min Zhang, Quan-Liang Zhao, Mao-Sheng Cao. In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum[J]. Nano-Micro Letters, 2024, 16(1): 173-. |
[2] |
Tian Mai, Lei Chen, Pei-Lin Wang, Qi Liu, Ming-Guo Ma. Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion[J]. Nano-Micro Letters, 2024, 16(1): 169-. |
[3] |
Weiyan Yu, Yi Yang, Yunjing Wang, Lulin Hu, Jingcheng Hao, Lu Xu, Weimin Liu. Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation[J]. Nano-Micro Letters, 2024, 16(1): 94-. |
[4] |
Zibo Chen, Shaodian Yang, Junhua Huang, Yifan Gu, Weibo Huang, Shaoyong Liu, Zhiqiang Lin, Zhiping Zeng, Yougen Hu, Zimin Chen, Boru Yang, Xuchun Gui. Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding[J]. Nano-Micro Letters, 2024, 16(1): 92-. |
[5] |
Ze Wu, Xiuli Tan, Jianqiao Wang, Youqiang Xing, Peng Huang, Bingjue Li, Lei Liu. MXene Hollow Spheres Supported by a C-Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption[J]. Nano-Micro Letters, 2024, 16(1): 107-. |
[6] |
Hailong Ma, Huajing Fang, Xinxing Xie, Yanming Liu, He Tian, Yang Chai. Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual-Olfactory Crossmodal Perception[J]. Nano-Micro Letters, 2024, 16(1): 104-. |
[7] |
Leqi Lei, Shuo Meng, Yifan Si, Shuo Shi, Hanbai Wu, Jieqiong Yang, Jinlian Hu. Wettability Gradient-Induced Diode: MXene-Engineered Membrane for Passive-Evaporative Cooling[J]. Nano-Micro Letters, 2024, 16(1): 159-. |
[8] |
Siavash Iravani, Rajender S. Varma. MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond[J]. Nano-Micro Letters, 2024, 16(1): 142-. |
[9] |
Jianmin Yang, Li Chang, Xiqi Zhang, Ziquan Cao, Lei Jiang. Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes[J]. Nano-Micro Letters, 2024, 16(1): 140-. |
[10] |
Poushali Das, Parham Khoshbakht Marvi, Sayan Ganguly, Xiaowu (Shirley) Tang, Bo Wang, Seshasai Srinivasan, Amin Reza Rajabzadeh, Andreas Rosenkranz. MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications[J]. Nano-Micro Letters, 2024, 16(1): 135-. |
|
|
|
|