海洋工程装备与技术 ›› 2025, Vol. 12 ›› Issue (1): 133-140.doi: 10.12087/oeet.2095-7297.2025.01.18
钟一鸣1,于曹阳1,2*,向先波2,3,连琏1,4
ZHONG Yiming1, YU Caoyang1,2*, XIANG Xianbo2,3, LIAN Lian1,4
摘要: 为应对复杂多变的未知环境对海洋航行器运动预测所造成的挑战,提出了一种融合级联滤波与误差触发支持向量回归(error-triggered support vector regression, ETSVR)的智能预测系统。首先,该系统基于移动平均滤波对原始数据进行预处理,以剔除异常值并抑制高频噪声,为后续预测提供高质量的数据集;其次,引入二阶扩展卡尔曼滤波对系统状态进行精确估计,进一步增强数据的平稳度和可靠性;最后,设计ETSVR算法对处理后的高质量数据集进行学习,以构建海洋航行器的运动预测模型,实现精准运动预测,并借助误差触发机制提升系统的实时性与计算效率。基于湖试数据的实验结果表明,所提出的智能运动预测系统在多项误差指标上均显著优于传统的线性回归算法。例如,在侧向速度预测中,均方误差较线性回归算法降低约53.2%;在转艏角速度预测中,最大误差减少了约58.2%。这些结果表明,提出的级联滤波与ETSVR算法相结合的智能预测系统,能够显著提升海洋航行器在复杂未知环境中的运动预测精度,具有较好的应用前景和重要的研究意义。
中图分类号: