安 鹏1,高健祎1,曹丹平2,牛洪彬3,吴 凡1
发布日期:
2020-04-26
基金资助:
Published:
2020-04-26
Supported by:
摘要: 弹性阻抗反演是主要的储层参数预测方法之一。入射角范围有限和低地震资料质量等原因,会导致密度反演的准确率较低。此外,纵横波速度比在速度峰值处的反演稳定性较差,也不能直接反演孔隙度等储层物性参数。目前通过常规的弹性阻抗反演等方法无法有效解决上述问题。本文将深度学习技术与弹性阻抗反演技术相结合,基于全连接深度神经网络建立起三个角度弹性阻抗与弹性、物性储层参数之间的非线性映射关系,测井数据的密度、纵横波速度比预测的均方根误差均降低10%以上。并以弹性阻抗搭建起测井、地震数据之间的桥梁,通过标准化等数据处理技术,最终得到密度、纵横波速度比和孔隙度的三维预测结果。
中图分类号:
安 鹏, 高健祎, 曹丹平, 牛洪彬, 吴 凡. 深度学习联合地震反演助力深海储层参数预测[J]. 海洋工程装备与技术, doi: 10.12087/oeet.2095-7297.2019.z1.50.
An Peng, Gao Jian-yi, Cao Dan-ping, Niu Hong-bin, Wu Fan. Deep Learning Combined Seismic Inversion for Deepwater Reservoir Parameter Prediction[J]. Ocean Engineering Equipment and Technology, doi: 10.12087/oeet.2095-7297.2019.z1.50.
[1] | 林浩安, 陈俐. 面向偏航最小的风帆助航船攻角优化策略研究[J]. 海洋工程装备与技术, 2024, 11(1): 1-9. |
[2] | 王 晶, 王 伟, 王爱武. 稳控装置在海油平台电网的应用[J]. 海洋工程装备与技术, 2024, 11(1): 65-69. |
[3] | 周烨琦, 王 锐. 海底沙波对光缆铺设放缆余量计算的影响[J]. 海洋工程装备与技术, 2023, 10(4): 135-139. |
[4] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[5] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[6] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[7] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[8] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[9] | 石涵, 李阳, 郭宏, 杨继明, 李博, 张磊, 于治雨. 集束动态海底电缆截面机械性能分析[J]. 海洋工程装备与技术, 2020, 7(2): 68-. |
[10] | 赵福臣, 宋晓丽, 王勇. 海底管道铺设系统升级改造及工程应用[J]. 海洋工程装备与技术, 2020, 7(2): 73-. |
[11] | 韩旭亮, 谢彬, 谢文会. 浮式保障平台混合定位系统时域模拟研究 [J]. 海洋工程装备与技术, 2020, 7(2): 79-. |
[12] | 邓林青, 朱耀文, 王宏伟, 张勇青, 李彤滨. 基于I1QR神经网络的N-$S系泊缆张力预报[J]. 海洋工程装备与技术, 2020, 7(2): 85-. |
[13] | 袁玉杰, 胡春红, 阮胜福, 史睿. 张力腿平台筋腱安装与临时浮筒设计[J]. 海洋工程装备与技术, 2020, 7(2): 93-. |
[14] | 王猛, 孙国民. 管道终端舷侧安装动态分析[J]. 海洋工程装备与技术, 2020, 7(2): 100-. |
[15] | 张庆国, 陈艳东, 刘立兵, 匡彪. 深海油气开发水下防喷器应急声呐监控系统[J]. 海洋工程装备与技术, 2020, 7(2): 107-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||