海洋工程装备与技术 ›› 2024, Vol. 11 ›› Issue (4): 95-102.doi: 10.12087/oeet.2095-7297.2024.04.15

• • 上一篇    下一篇

基于深海多目标搜寻任务的AUV路径规划方法研究

徐春晖1,2,周仕昊1,2,4,祁 彧1,2,方 田1,2,3,杨士霖1,2,3   

  1. 1. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016; 2. 辽宁省水下机器人重点实验室,辽宁 沈阳 110169; 3. 中国科学院大学,北京 100049; 4. 沈阳化工大学信息工程学院,辽宁 沈阳 110142
  • 出版日期:2025-02-21 发布日期:2025-02-23
  • 作者简介:徐春晖(1982— ),男,硕士研究生,副研究员,研究方向:水下机器人软件控制的研究。周仕昊(1998— ),男,硕士研究生,研究方向:自主水下机器人技术、人工智能。祁彧(1998— ),硕士研究生,助理工程师,研究方向:水下机器人软件控制的研究。
  • 基金资助:
    国家重点研发计划(2022YFC2806000)

Research on AUV Path Planning Method Based on Deep Sea Multi-Target Search Mission

XU Chunhui1,2, ZHOU Shihao1,2,4, QI Yu1,2, FANG Tian1,2,3, YANG Shilin1,2,3   

  1. 1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Liaoning China; 2. Key Laboratory of Marine Robotics of Liaoning, Shenyang 110169, Liaoning China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Department of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning China
  • Online:2025-02-21 Published:2025-02-23

摘要: 自主水下机器人(AUV)可以在深海海域进行资源勘査、目标搜寻等任务。在海上现场通常面临需要快速响应任务布署,进行AUV搜寻测绘任务的路径规划。本文在AUV多疑似目标点位搜寻任务中提出了一种先聚类后搜寻的AUV多目标搜寻方法,将大范围待测海域内的多个目标点进行K-means聚类,形成多个待测区域,减少对非目标区的搜寻,确保AUV携带有限能源下更高的搜寻效率;在多个待测区域内执行梳状路径方案,形成多区域内的AUV搜寻路径。开发了基于Tkinter的AUV多目标聚类搜寻软件,通过可视化交互工具实现本文所提方法,解决人工规划费时、易出错等问题,提高AUV布署效率。最后,对比不同聚类个数之间AUV路径的长短,确定本文方法的可行性及应用价值。

关键词: 自主水下机器人, 多目标点搜寻, K-means聚类算法, Tkinter

Abstract: Autonomous underwater robots (AUVs) can perform tasks such as resource exploration and target search in deep sea areas. At offshore sites, we often face the need to quickly respond to mission deployment and conduct path planning for AUV search and mapping missions. This paper proposes an AUV multi-target search method that clusters first and then searches in the AUV multi-suspect target point search task. It performs K-means clustering on multiple target points in the large-scale sea area to be measured to form multiple target points to be tested. The measurement area reduces the search for non-target areas and ensures higher search efficiency when the AUV carries limited energy; the comb path scheme is implemented in multiple areas to be measured to form an AUV search path in multiple areas. An AUV multi-target clustering search software based on Tkinter was developed to implement the method proposed in this article through visual interactive tools, solving the problems of time-consuming and error-prone manual planning and improving the efficiency of AUV deployment. Finally, We compare the length of AUV paths between different cluster numbers to determine the feasibility and application value of this method.

Key words: autonomous underwater vehicle, multitarget point search, K-means clustering algorithm, Tkinter

中图分类号: