1. |
|
2. |
T. He, X. Kang, F. Wang, J. Zhang, T. Zhang et al., Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries. Mater. Sci. Eng. R. Rep. 154, 100737 ( 2023). https://doi.org/10.1016/j.mser.2023.100737
|
3. |
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling et al., Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708-711 ( 2020). https://doi.org/10.1126/science.aay9972
|
4. |
|
5. |
Y. Wan, Y. Liu, D. Chao, W. Li, D. Zhao, Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano Mater. Sci. 5, 189-201 ( 2023). https://doi.org/10.1016/j.nanoms.2022.02.001
|
6. |
F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano Micro Lett. 14, 37 ( 2021). https://doi.org/10.1007/s40820-021-00781-6
|
7. |
M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin et al., The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdiscip. Mater. 1, 373-395 ( 2022). https://doi.org/10.1002/idm2.12040
|
8. |
|
9. |
N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9, 1901351 ( 2019). https://doi.org/10.1002/aenm.201901351
|
10. |
D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li et al., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8, 1703268 ( 2018). https://doi.org/10.1002/aenm.201703268
|
11. |
Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35, e2212186 ( 2023). https://doi.org/10.1002/adma.202212186
|
12. |
A. Siddiqa, Z. Yhobu, D.H. Nagaraju, M. Padaki, S. Budagumpi et al., Review and perspectives of sustainable lignin, cellulose, and lignocellulosic carbon special structures for energy storage. Energy Fuels 37, 2498-2519 ( 2023). https://doi.org/10.1021/acs.energyfuels.2c03557
|
13. |
X.-S. Wu, X.-L. Dong, B.-Y. Wang, J.-L. Xia, W.-C. Li, Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors. Renew. Energy 189, 630-638 ( 2022). https://doi.org/10.1016/j.renene.2022.03.023
|
14. |
H. Yang, B. Huan, Y. Chen, Y. Gao, J. Li et al., Biomass-based pyrolytic polygeneration system for bamboo industry waste: evolution of the char structure and the pyrolysis mechanism. Energy Fuels 30, 6430-6439 ( 2016). https://doi.org/10.1021/acs.energyfuels.6b00732
|
15. |
D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu et al., Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, e2000619 ( 2021). https://doi.org/10.1002/adma.202000619
|
16. |
H. Yamamoto, S. Muratsubaki, K. Kubota, M. Fukunishi, H. Watanabe et al., Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J. Mater. Chem. A 6, 16844-16848 ( 2018). https://doi.org/10.1039/c8ta05203d
|
17. |
W. Tao, J. Chen, C. Xu, S. Liu, S. Fakudze et al., Nanostructured MoS 2 with interlayer controllably regulated by ionic liquids/cellulose for high-capacity and durable sodium storage properties. Small 19, e2207397 ( 2023). https://doi.org/10.1002/smll.202207397
|
18. |
|
19. |
Y. Zhao, Y. Zhang, M.E. Lindström, J. Li, Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr. Polym. 117, 286-296 ( 2015). https://doi.org/10.1016/j.carbpol.2014.09.020
|
20. |
R.M. Brown Jr., J.H. Willison, C.L. Richardson, Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. U.S.A. 73, 4565-4569 ( 1976). https://doi.org/10.1073/pnas.73.12.4565
|
21. |
L. Ma, Z. Bi, Y. Xue, W. Zhang, Q. Huang et al., Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 8, 5812-5842 ( 2020). https://doi.org/10.1039/c9ta12536a
|
22. |
N.I. Tkacheva, S.V. Morozov, I.A. Grigor’ev, D.M. Mognonov, N.A. Kolchanov, Modification of cellulose as a promising direction in the design of new materials. Polym. Sci. Ser. B 55, 409-429 ( 2013). https://doi.org/10.1134/s1560090413070063
|
23. |
J. Prachayawarakorn, S. Chaiwatyothin, S. Mueangta, A. Hanchana, Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater. Des. 47, 309-315 ( 2013). https://doi.org/10.1016/j.matdes.2012.12.012
|
24. |
H. Krässig, J. Schurz, R.G. Steadman, K. Schliefer, W. Albrecht et al., Cellulose, in Ullmann’s Encyclopedia of Industrial Chemistry. (Wiley, USA, 2004), pp.11-95
|
25. |
B. Puangsin, H. Soeta, T. Saito, A. Isogai, Characterization of cellulose nanofibrils prepared by direct TEMPO-mediated oxidation of hemp bast. Cellulose 24, 3767-3775 ( 2017). https://doi.org/10.1007/s10570-017-1390-y
|
26. |
B.J.C. Duchemin, Structure, property and processing relationships of all-cellulose composites. PhD thesis, Université du Havre (2008). https://www.researchgate.net/publication/29488814
URL
|
27. |
S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez, Progress and opportunities in the characterization of cellulose—an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9, 1894 ( 2019). https://doi.org/10.3389/fpls.2018.01894
|
28. |
G. Zheng, Y. Cui, E. Karabulut, L. Wågberg, H. Zhu et al., Nanostructured paper for flexible energy and electronic devices. MRS Bull. 38, 320-325 ( 2013). https://doi.org/10.1557/mrs.2013.59
|
29. |
Y. Luo, J. Zhang, X. Li, C. Liao, X. Li, The cellulose nanofibers for optoelectronic conversion and energy storage. J. Nanomater. 2014, 654512 (2014). https://doi.org/10.1155/2014/654512
|
30. |
T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao et al., Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608-613 ( 2019). https://doi.org/10.1038/s41563-019-0315-6
|
31. |
|
32. |
|
33. |
|
34. |
Q. Wu, J. Xu, Z. Wu, S. Zhu, Y. Gao et al., The effect of surface modification on chemical and crystalline structure of the cellulose III nanocrystals. Carbohydr. Polym. 235, 115962 ( 2020). https://doi.org/10.1016/j.carbpol.2020.115962
|
35. |
H. Zhang, Q. Li, K.J. Edgar, G. Yang, H. Shao, Structure and properties of flax vs. lyocell fiber-reinforced polylactide stereo complex composites. Cellulose 28, 9297-9308 ( 2021). https://doi.org/10.1007/s10570-021-04105-0
|
36. |
J. Sugiyama, R. Vuong, H. Chanzy, Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168-4175 ( 1991). https://doi.org/10.1021/ma00014a033
|
37. |
|
38. |
M. Wada, L. Heux, A. Isogai, Y. Nishiyama, H. Chanzy et al., Improved structural data of cellulose III I prepared in supercritical ammonia. Macromolecules 34, 1237-1243 ( 2001). https://doi.org/10.1021/ma001406z
|
39. |
|
40. |
T.L. Bluhm, A. Sarko, Packing analysis of carbohydrates and polysaccharides. V. Crystal structures of two polymorphs of pachyman triacetate. Biopolymers 16, 2067-2089 ( 1977). https://doi.org/10.1002/bip.1977.360160917
|
41. |
M. Wada, L. Heux, J. Sugiyama, Polymorphism of cellulose I family: reinvestigation of cellulose IV I. Biomacromol 5, 1385-1391 ( 2004). https://doi.org/10.1021/bm0345357
|
42. |
|
43. |
J.C. Arthur, Chemical Modification of Cellulose and its Derivatives (Springer, 1989), pp.49-80
|
44. |
P. Trivedi, P. Fardim, Recent Advances in Cellulose Chemistry and Potential Applications, in Production of Materials from Sustainable Biomass Resources. (Springer, Singapore, 2019), pp. 99-115
|
45. |
|
46. |
|
47. |
C. Mukarakate, A. Mittal, P.N. Ciesielski, S. Budhi, L. Thompson et al., Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis. ACS Sustain. Chem. Eng. 4, 4662-4674 ( 2016). https://doi.org/10.1021/acssuschemeng.6b00812
|
48. |
J. Deng, T. Xiong, H. Wang, A. Zheng, Y. Wang, Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4, 3750-3756 ( 2016). https://doi.org/10.1021/acssuschemeng.6b00388
|
49. |
|
50. |
B. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.-M. Tarascon, Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6, 1501588 ( 2016). https://doi.org/10.1002/aenm.201501588
|
51. |
V. Simone, A. Boulineau, A. de Geyer, D. Rouchon, L. Simonin et al., Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure. J. Energy Chem. 25, 761-768 ( 2016). https://doi.org/10.1016/j.jechem.2016.04.016
|
52. |
Q. Lu, H.-Y. Tian, B. Hu, X.-Y. Jiang, C.-Q. Dong et al., Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde. J. Anal. Appl. Pyrolysis 120, 15-26 ( 2016). https://doi.org/10.1016/j.jaap.2016.04.003
|
53. |
|
54. |
|
55. |
|
56. |
M.J. Antal, Biomass Pyrolysis: A Review of the Literature Part 2—Lignocellulose Pyrolysis, in Advances in Solar Energy. (Springer, Boston, 1985), pp. 175-255
|
57. |
A.R. Teixeira, K.G. Mooney, J.S. Kruger, C.L. Williams, W.J. Suszynski et al., Aerosol generation by reactive boiling ejection of molten cellulose. Energy Environ. Sci. 4, 4306 ( 2011). https://doi.org/10.1039/c1ee01876k
|
58. |
Z. Wang, A.G. McDonald, R.J.M. Westerhof, S.R.A. Kersten, C.M. Cuba-Torres et al., Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J. Anal. Appl. Pyrolysis 100, 56-66 ( 2013). https://doi.org/10.1016/j.jaap.2012.11.017
|
59. |
D. Liu, Y. Yu, H. Wu, Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose. Energy Fuels 27, 1371-1380 ( 2013). https://doi.org/10.1021/ef301823g
|
60. |
Z. Wang, B. Pecha, R.J.M. Westerhof, S.R.A. Kersten, C.-Z. Li et al., Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis. Ind. Eng. Chem. Res. 53, 2940-2955 ( 2014). https://doi.org/10.1021/ie4014259
|
61. |
M. Zhang, Z. Geng, Y. Yu, Density functional theory (DFT) study on the dehydration of cellulose. Energy Fuels 25, 2664-2670 ( 2011). https://doi.org/10.1021/ef101619e
|
62. |
D. Alvira, D. Antorán, J.J. Manyà, Plant-derived hard carbon as anode for sodium-ion batteries: a comprehensive review to guide interdisciplinary research. Chem. Eng. J. 447, 137468 ( 2022). https://doi.org/10.1016/j.cej.2022.137468
|
63. |
Q. Jin, W. Li, K. Wang, P. Feng, H. Li et al., Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. J. Mater. Chem. A 7, 10239-10245 ( 2019). https://doi.org/10.1039/c9ta02107h
|
64. |
L. Li, L. Hou, J. Cheng, T. Simmons, F. Zhang et al., A flexible carbon/sulfur-cellulose core-shell structure for advanced lithium-sulfur batteries. Energy Storage Mater. 15, 388-395 ( 2018). https://doi.org/10.1016/j.ensm.2018.08.019
|
65. |
W. Lei, D. Jin, H. Liu, Z. Tong, H. Zhang, An overview of bacterial cellulose in flexible electrochemical energy storage. Chemsuschem 13, 3731-3753 ( 2020). https://doi.org/10.1002/cssc.202001019
|
66. |
D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao et al., A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1501929 ( 2016). https://doi.org/10.1002/aenm.201501929
|
67. |
H. Jia, N. Sun, M. Dirican, Y. Li, C. Chen et al., Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 44368-44375 ( 2018). https://doi.org/10.1021/acsami.8b13033
|
68. |
W. Zhang, B. Liu, M. Yang, Y. Liu, H. Li et al., Biowaste derived porous carbon sponge for high performance supercapacitors. J. Mater. Sci. Technol. 95, 105-113 ( 2021). https://doi.org/10.1016/j.jmst.2021.03.066
|
69. |
B. Yan, L. Feng, J. Zheng, Q. Zhang, Y. Dong et al., Nitrogen-doped carbon layer on cellulose derived free-standing carbon paper for high-rate supercapacitors. Appl. Surf. Sci. 608, 155144 ( 2023). https://doi.org/10.1016/j.apsusc.2022.155144
|
70. |
H. Wang, F. Sun, Z. Qu, K. Wang, L. Wang et al., Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage. ACS Sustain. Chem. Eng. 7, 18554-18565 ( 2019). https://doi.org/10.1021/acssuschemeng.9b04676
|
71. |
J.J. Manyà, Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939-7954 ( 2012). https://doi.org/10.1021/es301029g
|
72. |
H. Zhu, F. Shen, W. Luo, S. Zhb, M. Zhao et al., Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 33, 37-44 ( 2017). https://doi.org/10.1016/j.nanoen.2017.01.021
|
73. |
X. Liu, T. Wang, T. Zhang, Z. Sun, T. Ji et al., Solvated sodium storage via a coadsorptive mechanism in microcrystalline graphite fiber. Adv. Energy Mater. 12, 2202388 ( 2022). https://doi.org/10.1002/aenm.202202388
|
74. |
J. Jiang, J. Zhu, W. Ai, Z. Fan, X. Shen et al., Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 7, 2670-2679 ( 2014). https://doi.org/10.1039/C4EE00602J
|
75. |
T. Zhang, L. Yang, X. Yan, X. Ding, Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14, e1802444 ( 2018). https://doi.org/10.1002/smll.201802444
|
76. |
F. Wang, X. Shi, J. Zhang, T. He, L. Yang et al., Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl methacrylat e for fast sodium ion transport. Nanoscale 14, 3609-3617 ( 2022). https://doi.org/10.1039/D1NR07879H
|
77. |
V. Agarwal, G.W. Huber, W.C. Conner Jr. S. M. Auerbach, Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J. Chem. Phys. 135, 134506 ( 2011). https://doi.org/10.1063/1.3646306
|
78. |
L. Xie, G. Sun, F. Su, X. Guo, Q. Kong et al., Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4(5), 1637-1646 ( 2016). https://doi.org/10.1039/c5ta09043a
|
79. |
Z.-E. Yu, Y. Lyu, Y. Wang, S. Xu, H. Cheng et al., Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem. Commun. 56, 778-781 ( 2020). https://doi.org/10.1039/c9cc08221b
|
80. |
C. Yang, J. Xiong, X. Ou, C.-F. Wu, X. Xiong et al., A renewable natural cotton derived and nitrogen/sulfur Co-doped carbon as a high-performance sodium ion battery anode. Mater. Today Energy 8, 37-44 ( 2018). https://doi.org/10.1016/j.mtener.2018.02.001
|
81. |
Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6, 1600659 ( 2016). https://doi.org/10.1002/aenm.201600659
|
82. |
F. Wang, T. Zhang, F. Ran, Insights into sodium-ion batteries through plateau and slope regions in cyclic voltammetry by tailoring bacterial cellulose precursors. Electrochim. Acta 441, 141770 ( 2023). https://doi.org/10.1016/j.electacta.2022.141770
|
83. |
X. Yu, L. Xin, X. Li, Z. Wu, Y. Liu, Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries. Mater. Today 59, 25-35 ( 2022). https://doi.org/10.1016/j.mattod.2022.07.013
|
84. |
X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na + transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34, e2109282 ( 2022). https://doi.org/10.1002/adma.202109282
|
85. |
|
86. |
|
87. |
L. Yang, M. Hu, Q. Lv, H. Zhang, W. Yang et al., Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon 163, 288-296 ( 2020). https://doi.org/10.1016/j.carbon.2020.03.021
|
88. |
W. Li, J. Huang, L. Feng, L. Cao, Y. Ren et al., Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J. Alloys Compd. 716, 210-219 ( 2017). https://doi.org/10.1016/j.jallcom.2017.05.062
|
89. |
H. Yang, R. Xu, Y. Yu, A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic Efficiency: free-standing porous carbon nanofiber film derived from bacterial cellulose. Energy Storage Mater. 22, 105-112 ( 2019). https://doi.org/10.1016/j.ensm.2019.01.003
|
90. |
Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14, 6024 ( 2023). https://doi.org/10.1038/s41467-023-39637-5
|
91. |
Y. Zhao, Z. Hu, C. Fan, P. Gao, R. Zhang et al., Novel structural design and adsorption/insertion coordinating quasi-metallic Na storage mechanism toward high-performance hard carbon anode derived from carboxymethyl cellulose. Small 19, e2303296 ( 2023). https://doi.org/10.1002/smll.202303296
|
92. |
Y. He, P. Bai, S. Gao, Y. Xu, Marriage of an ether-based electrolyte with hard carbon anodes creates superior sodium-ion batteries with high mass loading. ACS Appl. Mater. Interfaces 10, 41380-41388 ( 2018). https://doi.org/10.1021/acsami.8b15274
|
93. |
R. Tian, S.-H. Park, P.J. King, G. Cunningham, J. Coelho et al., Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 10, 1933 ( 2019). https://doi.org/10.1038/s41467-019-09792-9
|
94. |
R. Tian, M. Breshears, D.V. Horvath, J.N. Coleman, The rate performance of two-dimensional material-based battery electrodes may not be as good as commonly believed. ACS Nano 14, 3129-3140 ( 2020). https://doi.org/10.1021/acsnano.9b08304
|
95. |
L.L. Wong, H. Chen, S. Adams, Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys. Chem. Chem. Phys. 19, 7506-7523 ( 2017). https://doi.org/10.1039/c7cp00037e
|
96. |
C. Heubner, J. Seeba, T. Liebmann, A. Nickol, S. Börner et al., Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes. J. Power. Sources 380, 83-91 ( 2018). https://doi.org/10.1016/j.jpowsour.2018.01.077
|
97. |
D.V. Horváth, J. Coelho, R. Tian, V. Nicolosi, J.N. Coleman, Quantifying the dependence of battery rate performance on electrode thickness. ACS Appl. Energy Mater. 3, 10154-10163 ( 2020). https://doi.org/10.1021/acsaem.0c01865
|
98. |
S. Alvin, D. Yoon, C. Chandra, R.F. Susanti, W. Chang et al., Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. J. Power. Sources 430, 157-168 ( 2019). https://doi.org/10.1016/j.jpowsour.2019.05.013
|
99. |
D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271 ( 2000). https://doi.org/10.1149/1.1393348
|
100. |
Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783-3787 ( 2012). https://doi.org/10.1021/nl3016957
|
101. |
|
102. |
|
103. |
X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu et al., Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87-104 ( 2019). https://doi.org/10.1016/j.mattod.2018.12.040
|
104. |
T.-C. Liu, W.G. Pell, B.E. Conway, S.L. Roberson, Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J. Electrochem. Soc. 145, 1882-1888 ( 1998). https://doi.org/10.1149/1.1838571
|
105. |
B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637-644 ( 2003). https://doi.org/10.1007/s10008-003-0395-7
|
106. |
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO 2 (anatas e nanoparticles. J. Phys. Chem. C 111, 14925-14931 ( 2007). https://doi.org/10.1021/jp074464w
|
107. |
H. Lu, F. Ai, Y. Jia, C. Tang, X. Zhang et al., Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small 14, e1802694 ( 2018). https://doi.org/10.1002/smll.201802694
|
108. |
Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng et al., Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 35, e2211461 ( 2023). https://doi.org/10.1002/adma.202211461
|
109. |
|
110. |
Y. Youn, B. Gao, A. Kamiyama, K. Kubota, S. Komaba et al., Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. NPJ Comput. Mater. 7, 48 ( 2021). https://doi.org/10.1038/s41524-021-00515-7
|
111. |
P. Wang, K. Zhu, K. Ye, Z. Gong, R. Liu et al., Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J. Colloid Interface Sci. 561, 203-210 ( 2020). https://doi.org/10.1016/j.jcis.2019.11.091
|
112. |
|
113. |
S. Zhou, Z. Tang, Z. Pan, Y. Huang, L. Zhao et al., Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat 2, 357-367 ( 2022). https://doi.org/10.1002/sus2.60
|
114. |
J.-L. Xia, D. Yan, L.-P. Guo, X.-L. Dong, W.-C. Li et al., Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 32, e2000447 ( 2020). https://doi.org/10.1002/adma.202000447
|
115. |
H. Au, H. Alptekin, A.C.S. Jensen, E. Olsson, C.A. O’Keefe et al., A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 13, 3469-3479 ( 2020). https://doi.org/10.1039/D0EE01363C
|
116. |
Y. Morikawa, S.-I. Nishimura, R.-I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10, 1903176 ( 2020). https://doi.org/10.1002/aenm.201903176
|
117. |
V. Surendran, R.K. Hema, M.S.O. Hassan, V. Vijayan, M.M. Shaijumon, Open or closed? Elucidating the correlation between micropore nature and sodium storage mechanisms in hard carbon. Batter. Supercaps 5, 2200316 ( 2022). https://doi.org/10.1002/batt.202200316
|
118. |
T.G.T.A. Bandara, J.C. Viera, M. González, The next generation of fast charging methods for Lithium-ion batteries: the natural current-absorption methods. Renew. Sustain. Energy Rev. 162, 112338 ( 2022). https://doi.org/10.1016/j.rser.2022.112338
|
119. |
|
120. |
T. Zhang, F. Ran, Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 31, 2010041 ( 2021). https://doi.org/10.1002/adfm.202010041
|
121. |
D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes et al., Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226-252 ( 2009). https://doi.org/10.1039/B801151F
|
122. |
K. Yu, X. Wang, H. Yang, Y. Bai, C. Wu, Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 55, 499-508 ( 2021). https://doi.org/10.1016/j.jechem.2020.07.025
|
123. |
|
124. |
B. Yin, S. Liang, D. Yu, B. Cheng, I.L. Egun et al., Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 33, e2100808 ( 2021). https://doi.org/10.1002/adma.202100808
|
125. |
X. Yin, Y. Zhao, X. Wang, X. Feng, Z. Lu et al., Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage. Small 18, e2105568 ( 2022). https://doi.org/10.1002/smll.202105568
|
126. |
|
127. |
F. Sun, H. Wang, Z. Qu, K. Wang, L. Wang et al., Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms. Adv. Energy Mater. 11, 2002981 ( 2021). https://doi.org/10.1002/aenm.202002981
|
128. |
K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977-980 ( 2006). https://doi.org/10.1126/science.1122152
|
129. |
B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221, 351-358 ( 2012). https://doi.org/10.1016/j.powtec.2012.01.024
|
130. |
|
131. |
K. Cui, C. Wang, Y. Luo, L. Li, J. Gao et al., Enhanced sodium storage kinetics of nitrogen rich cellulose-derived hierarchical porous carbon via subsequent boron doping. Appl. Surf. Sci. 531, 147302 ( 2020). https://doi.org/10.1016/j.apsusc.2020.147302
|
132. |
J. Wang, Z. Xu, J.-C. Eloi, M.-M. Titirici, S.J. Eichhorn, Ice-templated, sustainable carbon aerogels with hierarchically tailored channels for sodium- and potassium-ion batteries. Adv. Funct. Mater. 32, 2110862 ( 2022). https://doi.org/10.1002/adfm.202110862
|
133. |
T. Zhang, J. Chen, B. Yang, H. Li, S. Lei et al., Enhanced capacities of carbon nanosheets derived from functionalized bacterial cellulose as anodes for sodium ion batteries. RSC Adv. 7, 50336-50342 ( 2017). https://doi.org/10.1039/C7RA10118J
|
134. |
F. Xie, Z. Xu, A.C.S. Jensen, H. Au, Y. Lu et al., Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 29, 1901072 ( 2019). https://doi.org/10.1002/adfm.201901072
|
135. |
Q. Shi, D. Liu, Y. Wang, Y. Zhao, X. Yang et al., High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator. Small 15, e1901724 ( 2019). https://doi.org/10.1002/smll.201901724
|
136. |
|
137. |
|
138. |
|
139. |
Y. Li, J. Hu, Z. Wang, K. Yang, W. Huang et al., Low-temperature catalytic graphitization to enhance Na-ion transportation in carbon electrodes. ACS Appl. Mater. Interfaces 11, 24164-24171 ( 2019). https://doi.org/10.1021/acsami.9b07206
|
140. |
Z. Li, Z. Jian, X. Wang, I.A. Rodríguez-Pérez, C. Bommier et al., Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem. Commun. 53, 2610-2613 ( 2017). https://doi.org/10.1039/C7CC00301C
|
141. |
J. Borowec, V. Selmert, A. Kretzschmar, K. Fries, R. Schierholz et al., Carbonization-temperature-dependent electrical properties of carbon nanofibers-from nanoscale to macroscale. Adv. Mater. 35, e2300936 ( 2023). https://doi.org/10.1002/adma.202300936
|
142. |
C. Heubner, K. Nikolowski, S. Reuber, M. Schneider, M. Wolter et al., Recent insights into rate performance limitations of Li-ion batteries. Batter. Supercaps 4(2), 268-285 ( 2021). https://doi.org/10.1002/batt.202000227
|
143. |
|
144. |
S. Li, K. Wang, G. Zhang, S. Li, Y. Xu et al., Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 ( 2022). https://doi.org/10.1002/adfm.202200796
|
145. |
F. Yao, D.T. Pham, Y.H. Lee, Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. Chemsuschem 8, 2284-2311 ( 2015). https://doi.org/10.1002/cssc.201403490
|
146. |
H.-W. Liang, Q.-F. Guan, Z. Zhu, L.-T. Song, H.-B. Yao et al., Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 ( 2012). https://doi.org/10.1038/am.2012.34
|
147. |
H. Kim, J.-Y. Yi, B.-G. Kim, J.E. Song, H.-J. Jeong et al., Development of cellulose-based conductive fabrics with electrical conductivity and flexibility. PLoS ONE 15, e0233952 ( 2020). https://doi.org/10.1371/journal.pone.0233952
|
148. |
W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li 3Sb. J. Electrochem. Soc. 124, 1569-1578 ( 1977). https://doi.org/10.1149/1.2133112
|
149. |
Y. Chen, Z. Zhang, Y. Lai, X. Shi, J. Li et al., Self-assembly of 3D neat porous carbon aerogels with NaCl as template and flux for sodium-ion batteries. J. Power. Sources 359, 529-538 ( 2017). https://doi.org/10.1016/j.jpowsour.2017.05.066
|
150. |
L. Wang, J. Zhao, X. He, J. Gao, J. Li et al., Electrochemical impedance spectroscopy (EIS) study of LiNi 1/3Co 1/3Mn 1/3O 2 for Li-ion batteries. Int. J. Electrochem. Sci. 7, 345-353 ( 2012). https://doi.org/10.1016/s1452-3981(23)13343-8
|
151. |
|
152. |
|
153. |
W. Shao, Q. Cao, S. Liu, T. Zhang, Z. Song et al., Replacing “Alkyl” with “Aryl” for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat 2, 319-334 ( 2022). https://doi.org/10.1002/sus2.68
|
154. |
|
155. |
|
156. |
X. Ding, Y. Xin, Y. Wang, M. Wang, T. Song et al., Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes. ACS Sustain. Chem. Eng. 11, 6879-6889 ( 2023). https://doi.org/10.1021/acssuschemeng.2c06146
|
157. |
|
158. |
C. Bommier, X. Ji, Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small 14, e1703576 ( 2018). https://doi.org/10.1002/smll.201703576
|
159. |
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 ( 2021). https://doi.org/10.1002/aenm.202100046
|
160. |
|
161. |
Q. Wang, J. Li, H. Jin, S. Xin, H. Gao, Prussian-blue materials: revealing new opportunities for rechargeable batteries. InfoMat 4, e12311 ( 2022). https://doi.org/10.1002/inf2.12311
|
162. |
|
163. |
Q. Wang, X. Ding, J. Li, H. Jin, H. Gao, Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chem. Eng. J. 448, 137740 ( 2022). https://doi.org/10.1016/j.cej.2022.137740
|
164. |
J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10, 370-376 ( 2017). https://doi.org/10.1039/c6ee03367a
|
165. |
|
166. |
A. Karatrantos, Q. Cai, Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys. Chem. Chem. Phys. 18, 30761-30769 ( 2016). https://doi.org/10.1039/c6cp04611h
|
167. |
N. Ortiz Vitoriano, I. Ruiz de Larramendi, R.L. Sacci, I. Lozano, C.A. Bridges et al., Goldilocks and the three glymes: how Na + solvation controls Na-O 2 battery cycling. Energy Storage Mater. 29, 235-245 ( 2020). https://doi.org/10.1016/j.ensm.2020.04.034
|
168. |
|
169. |
L. Zhao, Y. Peng, F. Ran, Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: reasons, progress, and perspectives. Energy Storage Mater. 58, 48-73 ( 2023). https://doi.org/10.1016/j.ensm.2023.03.009
|
170. |
L. Zhao, Y. Li, M. Yu, Y. Peng, F. Ran, Electrolyte-wettability issues and challenges of electrode materials in electrochemical energy storage, energy conversion, and beyond. Adv. Sci. 10, e2300283 ( 2023). https://doi.org/10.1002/advs.202300283
|
171. |
M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li et al., Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 35, e2300002 ( 2023). https://doi.org/10.1002/adma.202300002
|
172. |
Z. Wang, H. Yang, Y. Liu, Y. Bai, G. Chen et al., Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries. Small 16, e2003268 ( 2020). https://doi.org/10.1002/smll.202003268
|
173. |
M.E. Lee, S.M. Lee, J. Choi, D. Jang, S. Lee et al., Electrolyte-dependent sodium ion transport behaviors in hard carbon anode. Small 16, e2001053 ( 2020). https://doi.org/10.1002/smll.202001053
|
174. |
Y. Meng, C.I. Contescu, P. Liu, S. Wang, S.-H. Lee et al., Understanding the local structure of disordered carbons from cellulose and lignin. Wood Sci. Technol. 55, 587-606 ( 2021). https://doi.org/10.1007/s00226-021-01286-6
|
175. |
|
176. |
Q. Li, J. Zhang, L. Zhong, F. Geng, Y. Tao et al., Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy Mater. 12, 2201734 ( 2022). https://doi.org/10.1002/aenm.202201734
|
177. |
T. Zhang, T. Zhang, F. Wang, F. Ran, Pretreatment process before heat pyrolysis of plant-based precursors paving way for fabricating high-performance hard carbon for sodium-ion batteries. ChemElectroChem 10, 2300442 ( 2023). https://doi.org/10.1002/celc.202300442
|
178. |
|
179. |
X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 14, 2036-2089 ( 2021). https://doi.org/10.1039/d1ee00166c
|
180. |
H. Wang, E. Zhu, J. Yang, P. Zhou, D. Sun et al., Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J. Phys. Chem. C 116, 13013-13019 ( 2012). https://doi.org/10.1021/jp301099r
|
181. |
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, e1905923 ( 2020). https://doi.org/10.1002/adma.201905923
|
182. |
M. Wang, H. Wu, S. Xu, P. Dong, A. Long et al., Cellulose nanocrystal regulated ultra-loose, lightweight, and hierarchical porous reduced graphene oxide hybrid aerogel for capturing and determining organic pollutants from water. Carbon 204, 94-101 ( 2023). https://doi.org/10.1016/j.carbon.2022.12.058
|
183. |
Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta et al., Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7, 1602894 ( 2017). https://doi.org/10.1002/aenm.201602894
|
184. |
L. Li, Q. Wang, X. Zhang, L. Fang, X. Li et al., Unique three-dimensional Co 3O 4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries. Appl. Surf. Sci. 508, 145295 ( 2020). https://doi.org/10.1016/j.apsusc.2020.145295
|
185. |
L. Shi, Y. Li, F. Zeng, S. Ran, C. Dong et al., In situ growth of amorphous Fe 2O 3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries. Chem. Eng. J. 356, 107-116 ( 2019). https://doi.org/10.1016/j.cej.2018.09.018
|
186. |
H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang et al., Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54-63 ( 2017). https://doi.org/10.1016/j.carbon.2017.06.040
|
187. |
H.-M. Wang, H.-X. Wang, Y. Chen, Y.-J. Liu, J.-X. Zhao et al., Phosphorus-doped graphene and (8, 0) carbon nanotube: structural, electronic, magnetic properties, and chemical reactivity. Appl. Surf. Sci. 273, 302-309 ( 2013). https://doi.org/10.1016/j.apsusc.2013.02.035
|
188. |
K.C. Wasalathilake, G.A. Ayoko, C. Yan, Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: a density functional theory investigation. Carbon 140, 276-285 ( 2018). https://doi.org/10.1016/j.carbon.2018.08.071
|
189. |
|
190. |
A.K. Thakur, K. Kurtyka, M. Majumder, X. Yang, H.Q. Ta et al., Recent advances in boron- and nitrogen-doped carbon-based materials and their various applications. Adv. Mater. Interfaces 9, 2101964 ( 2022). https://doi.org/10.1002/admi.202101964
|
191. |
Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang et al., Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 ( 2020). https://doi.org/10.1002/aenm.202000927
|
192. |
D. Wu, F. Sun, Z. Qu, H. Wang, Z. Lou et al., Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 10, 17225-17236 ( 2022). https://doi.org/10.1039/D2TA04194D
|
193. |
P. Wang, B. Qiao, Y. Du, Y. Li, X. Zhou et al., Fluorine-doped carbon particles derived from Lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C 119, 21336-21344 ( 2015). https://doi.org/10.1021/acs.jpcc.5b05443
|
194. |
Z. Liu, L. Yue, C. Wang, D. Li, L. Tang et al., Free-standing carbon nanofiber composite networks derived from bacterial cellulose and polypyrrole for ultrastable potassium-ion batteries. ACS Appl. Mater. Interfaces 15(11), 14865-14873 ( 2023). https://doi.org/10.1021/acsami.3c01401
|
195. |
X.-X. He, J.-H. Zhao, W.-H. Lai, R. Li, Z. Yang et al., Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 44358-44368 ( 2021). https://doi.org/10.1021/acsami.1c12171
|
196. |
|
197. |
A. Farooq, M.K. Patoary, M. Zhang, H. Mussana, M. Li et al., Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int. J. Biol. Macromol. 154, 1050-1073 ( 2020). https://doi.org/10.1016/j.ijbiomac.2020.03.163
|
198. |
Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622-2626 ( 2019). https://doi.org/10.1002/anie.201810175
|
199. |
X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong et al., Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 9(6), 1803260 ( 2018). https://doi.org/10.1002/aenm.201803260
|
200. |
G. Qiu, M. Ning, M. Zhang, J. Hu, Z. Duan et al., Flexible hard-soft carbon heterostructure based on mesopore confined carbonization for ultrafast and highly durable sodium storage. Carbon 205, 310-320 ( 2023). https://doi.org/10.1016/j.carbon.2023.01.018
|
201. |
D.-C. Wang, H.-Y. Yu, D. Qi, Y. Wu, L. Chen et al., Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 143, 11620-11630 ( 2021). https://doi.org/10.1021/jacs.1c04710
|
202. |
|
203. |
A. Dobashi, J. Maruyama, Y. Shen, M. Nandi, H. Uyama, Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Carbohydr. Polym. 200, 381-390 ( 2018). https://doi.org/10.1016/j.carbpol.2018.08.016
|
204. |
Q. Bai, Q. Xiong, C. Li, Y. Shen, H. Uyama, Hierarchical porous carbons from poly(methyl methacrylat e/bacterial cellulose composite monolith for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 5, 9390-9401 ( 2017). https://doi.org/10.1021/acssuschemeng.7b02488
|
205. |
F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu et al., Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1600377 ( 2016). https://doi.org/10.1002/aenm.201600377
|
206. |
H. Zhao, J. Ye, W. Song, D. Zhao, M. Kang et al., Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon. ACS Appl. Mater. Interfaces 12, 6991-7000 ( 2020). https://doi.org/10.1021/acsami.9b11627
|
207. |
R. Guo, C. Lv, W. Xu, J. Sun, Y. Zhu et al., Effect of intrinsic defects of carbon materials on the sodium storage performance. Adv. Energy Mater. 10, 1903652 ( 2020). https://doi.org/10.1002/aenm.201903652
|
208. |
L. Xiao, H. Lu, Y. Fang, M.L. Sushko, Y. Cao et al., Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8, 1703238 ( 2018). https://doi.org/10.1002/aenm.201703238
|
209. |
Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34, e2108621 ( 2022). https://doi.org/10.1002/adma.202108621
|
210. |
M. Wang, Z. Yang, W. Li, L. Gu, Y. Yu, Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small 12, 2559-2566 ( 2016). https://doi.org/10.1002/smll.201600101
|
211. |
D. Sun, B. Luo, H. Wang, Y. Tang, X. Ji et al., Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy 64, 103937 ( 2019). https://doi.org/10.1016/j.nanoen.2019.103937
|
212. |
C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet et al., Insights on the Na + ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327-335 ( 2018). https://doi.org/10.1016/j.nanoen.2017.12.013
|
213. |
X. Tang, F. Xie, Y. Lu, Z. Chen, X. Li et al., Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes. Nano Res. 16, 12579-12586 ( 2023). https://doi.org/10.1007/s12274-023-5643-9
|
214. |
K.-Y. Lee, H. Qian, F.H. Tay, J.J. Blaker, S.G. Kazarian et al., Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. J. Mater. Sci. 48, 367-376 ( 2013). https://doi.org/10.1007/s10853-012-6754-y
|
215. |
T. Zhang, J. Lang, L. Liu, L. Liu, H. Li et al., Effect of carboxylic acid groups on the supercapacitive performance of functional carbon frameworks derived from bacterial cellulose. Chin. Chem. Lett. 28, 2212-2218 ( 2017). https://doi.org/10.1016/j.cclet.2017.08.013
|
216. |
|
217. |
Q. Wang, Z. Chen, Q. Luo, H. Li, J. Li et al., Capillary evaporation on high-dense conductive ramie carbon for assisting highly volumetric-performance supercapacitors. Small 19, e2303349 ( 2023). https://doi.org/10.1002/smll.202303349
|
218. |
D.-S. Bin, Y. Li, Y.-G. Sun, S.-Y. Duan, Y. Lu et al., Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8, 1800855 ( 2018). https://doi.org/10.1002/aenm.201800855
|
219. |
Y. Zhang, Y. Zhu, J. Zhang, S. Sun, C. Wang et al., Optimizing the crystallite structure of lignin-based nanospheres by resinification for high-performance sodium-ion battery anodes. Energy Technol. 8, 1900694 ( 2020). https://doi.org/10.1002/ente.201900694
|
220. |
|
221. |
H. Li, C. Qi, Y. Tao, H. Liu, D.-W. Wang et al., Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 9, 1900079 ( 2019). https://doi.org/10.1002/aenm.201900079
|
222. |
Q. Li, Y.-N. Zhang, S. Feng, D. Liu, G. Wang et al. N, S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries. Int. J. Energy Res. 45, 7082-7092 ( 2021). https://doi.org/10.1002/er.6294
|
223. |
|
224. |
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051-1069 ( 2015). https://doi.org/10.1515/pac-2014-1117
|
225. |
X.-K. Wang, J. Shi, L.-W. Mi, Y.-P. Zhai, J.-Y. Zhang et al., Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 39, 1053-1062 ( 2020). https://doi.org/10.1007/s12598-020-01469-3
|
226. |
K. Wang, F. Sun, H. Wang, D. Wu, Y. Chao et al., Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na + plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 32, 2203725 ( 2022). https://doi.org/10.1002/adfm.202203725
|
227. |
J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano Micro Lett. 13, 98 ( 2021). https://doi.org/10.1007/s40820-020-00587-y
|
228. |
D. Guo, J. Qin, Z. Yin, J. Bai, Y.-K. Sun et al., Achieving high mass loading of Na 3V2(PO4) 3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136-147 ( 2018). https://doi.org/10.1016/j.nanoen.2017.12.038
|
229. |
Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9, 1902852 ( 2019). https://doi.org/10.1002/aenm.201902852
|